SD750FR

SOFTWARE AND PROGRAMMING MANUAL

SD750FR

- $4 Q$ REGENERATIVE ACTIVE FRONT END DRIVE

Software and Programming Manual

ABOUT THIS MANUAL

PURPOSE

This manual contains important instructions for the installation and maintenance of Power Electronics SD750FR variable speed drives.

TARGET AUDIENCE

This manual is intended for qualified customers who will install, operate and maintain Power Electronics SD750FR variable speed drives.

Only trained electricians may install and commission the drives.

REFERENCE MANUALS

The following reference documents are available for SD750FR variable speed drives:

- SD750FR Hardware and Installation Manual.
- SD750FR Programming and Software Manual.
- Pumps Application Manual.
- Accesories Manuals.

POWER ELECTRONICS CONTACT INFORMATION

Power Electronics USA Inc.	Power Electronics España, S.L.
1510 N. Hobson Street, Gilbert,	Polígono Industrial Carrases
Phoenix	Ronda del Camp d'Aviació n${ }^{\circ} 4$
AZ 85233	46160, Llíria (Valencia)
UNITED STATES OF AMERICA	SPAIN
US Sales: $602-354-4890 /(480) 519-5977$	Telephone: (+34) 961366557
	Website: www.power-electronics.com

REVISIONS CONTROL		
DATE (DD/MM/YYYY)	REVISION	DESCRIPTION
$25 / 05 / 2021$	A	First Edition.
$07 / 09 / 2021$	B	Updated to new software version. Acronyms. Fault messages descriptions and actions. Visualization parameters. Description of programming parameters. Modbus communication. Configuration register.
$14 / 03 / 2022$	C	Updated to new software version. Acronyms. Status \& warning messages. Fault messages, descriptions and actions. Description of programming parameters. Modbus communication. Configuration register. Misprints correction.

The equipment and technical documentation are periodically updated. Power Electronics reserves the right to modify all or part of the contents of this manual without previous notice. To consult the most updated information of this product, you may access our website www.power-electronics.com, where the latest version of this manual can be downloaded. The reproduction or distribution of the present manual is strictly forbidden, unless express authorization from Power Electronics.

TABLE OF CONTENTS

ABOUT THIS MANUAL 2
ACRONYMS 7
SAFETY SYMBOLS 9
SAFETY INSTRUCTIONS 10

1. DISPLAY UNIT AND CONTROL KEYPAD 11
Keypad unit description 11
LED for status indication 12
Alphanumeric LCD display 12
Control keys 12
Menu 13
2. STATUS \& WARNING MESSAGES 15
List of status messages 15
List of warning messages 16
3. FAULT MESSAGES. DESCRIPTIONS AND ACTIONS 18
Description of inverter bridge faults 19
Description of rectifier bridge faults 22
List of inverter bridge faults and troubleshooting 23
List of rectifier bridge faults and troubleshooting 28
4. VISUALIZATION PARAMETERS 30
Group V1: Motor visualization 31
Group V2: Drive visualization 32
Group V3: External visualization 32
Group V4: Internal visualization 33
Group V5: Programmable parameters 33
Group V6: Registers 34
Group V7: Rectifier info 34
Group V8: Date and time 35
Group V9: Last fault registers 35
Subgroup V9.1: Motor registers 35
Subgroup V9.2: Drive registers 36
Subgroup V9.3: External registers 36
Subgroup V9.4: Internal registers 37
Subgroup V9.5: Rectifier registers 37
Subgroup V9.6: Local motor reg 37
Group V11: Exp PT100 38
Group V12: Warning history 38
Group V13: Local Motor vis 39
5. DESCRIPTION OF PROGRAMMING PARAMETERS 40
Group 1: Options 41
Group 2: Motor nameplate data 42
Group 3: References 43
Group 4: Inputs 44
Subgroup 4.1: Digital inputs 44
Subgroup 4.2: Analogue input 1 48
Subgroup 4.3: Analogue input 2 / pulse 50
Subgroup 4.4: Analogue input 3 / PT100 52
Subgroup 4.5: Analogue input 4 53
Subgroup 4.6: Analogue input 5 53
Subgroup 4.7: Analogue input 6 53
Subgroup 4.8: Analogue input 7 53
Group 5: Acc / Dec rates 54
Subgroup 5.1: Acceleration 54
Subgroup 5.2: Deceleration 54
Subgroup 5.3: Motorized potentiometer 54
Others 55
Group 6: PID Control 55
Group 7: Start / stop control 56
Subgroup 7.1: Start 56
Subgroup 7.2: Stop 57
Subgroup 7.3: Spin start 57
Group 8: Outputs 58
Subgroup 8.1: Digital outputs 58
Subgroup 8.2: Analogue output 1 62
Subgroup 8.3: Analogue output 2 / pulse 63
Subgroup 8.4: Analogue output 3 63
Subgroup 8.5: Analogue output 4 63
Subgroup 8.6: Analogue output 5 64
Subgroup 8.7: Analogue output 6 64
Group 9: Comparators 64
Subgroup 9.1: Comparator 1 64
Subgroup 9.2: Comparator 2 65
Subgroup 9.3: Comparator 3 66
Group 10: Limits 67
Subgroup 10.1: Speed 67
Subgroup 10.2: Current/Torque 67
Group 11: Protections 68
Subgroup 11.1: Input 68
Subgroup 11.2: Motor 69
Group 12: Auto reset 70
Group 13: Fault history 71
Group 14: Multi-references 71
Group 15: Inch speeds 72
Group 16: Skip frequencies 72
Group 17: Brake 73
Group 18: Encoder 73
Group 19: Fine tuning 73
Subgroup 19.1: IGBT control 73
Subgroup 19.2: Motor load 74
Subgroup 19.3: Motor model 75
Subgroup 19.4: Vector PID 76
Group 20: Serial Communication 77
Subgroup 20.1: Modbus RTU 77
Subgroup 20.2: Profibus configuration 78
Subgroup 20.6: Custom modbus configuration 78
Subgroup 20.7: Custom modbus values 79
Group 21: Networks 80
Subgroup 21.1: Ethernet 80
Subgroup 21.2: Client TCP 80
Subgroup 21.3: EtherNet / IP 80
Subgroup 21.4: Profinet 80
Group 23: Expansion 80
Subgroup 23.1: PT100 80
Subgroup 23.2: Input/output 80
Subgroup 23.3: Communications 81
Subgroup 23.4: Others 81
Group 24: Rectifier 82
Subgroup 24.1: Rectifier configuration 82
Subgroup 24.2: PID configuration 83
Subgroup 24.3: Rectifier protection 83
Subgroup 24.4: LCL control 83
Subgroup 24.5: Self - regulation 84
Group 25: Master / Slave 84
Group 26: Fans. 84
6. MODBUS COMMUNICATION 85
Supported Modbus Function Codes 85
Modbus function code № 3: Registers reading 85
Modbus Function Code № 16: Registers Writing 86
Addressing modes 87
Broadcast addressing mode 87
Remote control functions 87
Summary of Modbus addresses 88
Modbus register 'COMMS STATUS’ 88
Programming parameters 89
Visualization parameters 105
7. COMMON CONFIGURATIONS 113
Start / Stop commands and speed reference by keypad 113
Parameter configuration 113
Start / Stop commands by terminals and speed reference by analogue input 114
Parameter configuration 114
Connection drawing 115
Start / Stop commands by terminals and speed reference by motorized potentiometer 116
Parameter configuration 116
Connection drawing 117
Start / Stop commands by terminals and seven speed references selectable by digital inputs 118
Parameter configuration 118
Connection drawing 119
8. CONFIGURATION REGISTER 120

ACRONYMS

The terms commonly used in the documentation of Power Electronics' products are listed in the table below.

Please notice this is a general series of terms and it encompasses all our product divisions (industrial, solar, storage, and electric mobility), thus, some of the following expressions may not apply to this particular manual.

ACRONYM	MEANING
AASS	Auxiliary Services
AC	Alternating Current
AI	Analogue Input
AO	Analogue Output
BESS	Battery Energy Storage System
BMS	Battery Manager Solution
CCID	Charge circuit interrupting device
CCL	Charge Current Limit.
CCS	Combined charging system - charging and communications protocol following the standard IEC
CHAdeMO	Ch851-23 Annex CC
CPU	Charging and communications protocol following the standard IEC 61851-23 Annex AA
DC	Central Processing Unit
DCL	Direct Current
DI	Digcharge Current Limput
DSP	Digital Signal Processor
DO	Digital Output
EMS	Energy Management System
EV	Electric Vehicle
FPGA	Programmable device (Field-Programmable Gate Array)
FRU	Field Replaceable Unit
GFDI	Ground Fault Detector Interrupter
GPRS	General Packet Radio Services, a data transmission system
HVAC	Heating, Ventilation, and Air Conditioning
IGBT	Insulated Gate Bipolar Transistor
IMI	Insulation monitoring device
IT	Grid system where the power supply is kept isolated and the electrical equipment system is
grounded.	
LOTO	Lock Out - Tag Out
MCB	Miniature Circuit Breaker
MPCS	Multi Power Conversion System
MID	Measuring Instrument Directive
MV	Medium Voltage. This term is used to refer to high voltage in general
PE	Ground connection
PI	Point Of Interconnection

ACRONYM	MEANING
PPE	Personal Protection Equipment
PV	Photovoltaic energy
RCD	Residual Current Device
RCM	Residual Current Monitor
RFID	Radio Frequency Identification
SOC	State Of Charge - referred to battery
SOH	State Of Health - referred to battery. It compares the actual state of the battery to its initial conditions. It is measured in percentage
STO	Safe Torque Off
TN	Grid system where the power supply is grounded, and the electrical equipment system is brought to the same ground through the neutral connector.
TT	Grid system where both the power supply and the electrical devices are connected to the ground via separate connections
UnS	Uninterruptible Power Supply
VSD / VFD	

SAFETY SYMBOLS

Always follow safety instructions to prevent accidents and potential hazards from occurring.

In this manual, safety messages are classified as follows:
Identifies potentially hazardous situations where dangerous voltage may
be present, which if not avoided, could result in minor personal injury,
serious injury or death.
Be extremely careful and follow the instructions to avoid the risk of
electrical shocks.

Other symbols used in this manual for safety messages are the following:

Hot surface. Be careful and follow the instructions to avoid burns and personal injuries.

Risk of fire. Be careful and follow the instructions to prevent causing an unintentional fire.

Caution, risk of electric shock. Energy storage timed discharge. Wait for the indicated time to avoid electrical hazards.

Caution, risk of hearing damage. Wear hearing protection.

SAFETY INSTRUCTIONS

IMPORTANT!

Read carefully this manual to maximize the performance of the product and to ensure its safe use.

In order to appropriately use the drive, please, follow all instructions described in the Hardware and Installation Manual which refer to transportation, installation, electrical connection and commissioning of the equipment.

Power Electronics accepts no responsibility or liability for partial or total damages resulting from incorrect use of equipment.

CAUTION

Read carefully the Hardware and Installation Manual and all documentation related to the drive to ensure its safe use and prevent personal injuries and equipment damage.

Comply with local and national regulation.

DISPLAY UNIT AND CONTROL KEYPAD

Keypad unit description

The graphic display is a removable display unit for remote installation. There is a LED indicator integrated in the Power Electronics logo on the display which provides information about the operation status of the equipment. In addition, there is a 2.8 " LCD screen and eight control keys.

NOTICE

If the USB terminal is connected to the control board, do not connect the micro USB connection of the display cable to any other equipment different from the SD750FR drive's display. Otherwise the equipment connected may be damaged.

The display is connected to the control board using a cable with a micro USB terminal on the end of the display and a USB terminal on the control card side.

Note: By keeping the left and right control keys pressed, while the display is connected to the equipment, the user forces the download of the MCF installed in the central microprocessor. Drive parameters will be initialized to factory values.

LED for status indication

The status LED shows the drive status while it is on. It is located in the Power Electronics logo, and will change its color as follows:

- Green: The equipment is in run status.
- Red: The equipment has stopped due to a FAULT.
- Yellow: The equipment is in WARNING status.

Alphanumeric LCD display

The main screen of the display is divided into two areas:
a) Status bar: Shows the main indicators of equipment status.

From left to right (see figure "Application screen"):

- Current Fault.
- Current Warning.
- Status
- Output current in Amperes.
- Current motor speed or equipment power: Displays the current motor speed or the current equipment power in \%. If UVW has negative sign, it indicates the motor rotates anti-clockwise.

Application screen
b) Visualization Area: Shows the main visualization of the parameters and the different menus of the application.

Control keys

The display integrates eight control keys with the following functions:

This key is used to scroll up in the Menu or modify the value of the parameters

Scroll left the main visualization screen or return to the previous screen in the Menu options. Cancel changes made to a parameter.

Scroll right the main visualization screen or enter to the different options of the Menu. Save changes made to a parameter.

This key is used to scroll down in the Menu or modify the value of the parameters.

Enter or exit the menu. It can also be used as editing help during parameter adjustment, allowing to use the multiplier to set the desired value of a variable (manual precision) or to modify the rate of updating the value according to the time pressed (automatic precision). To enable it, go to Menu - Settings - Variable editing mode and select "Manual precision". Use the arrows right / left to increase / decrease the digit "ED". See example below. See section 5.

This key is used to start the equipment using the keyboard when the control has been set to Local.

This key is used to stop the converter from the keyboard when the control has
 been set to Local. In the event of a fault, this button can be used to reset the equipment when the LOCAL control is enabled and the parameter G4.1.3 "Allow local reset" is enabled.

This key is used for the selection of the control mode. When set to Local, the device is controlled as Local. When set to Remote, the equipment works with the option

F $50 \quad$ A0	OFF	0.0 A	0.0%
	MENU		
Parameters			
Versions			
Options			
Backups			
Settings			
File download			

Access and exit of the menu
This section includes the following submenus:

- Parameters:

This menu contains all the configuration and visualization. These parameters are grouped into subgroups or sub-menus to facilitate their location.

- Versions:

This menu contains the information of the versions associated with the equipment in terms of MCF, uP, DSP, HW, expansion board and display.

- Custom view creator:

This menu allows creating custom display screens on the main screen, selecting the parameters to be included for any of the three lines of the new screen to be customized. Once the line to be configured is selected, the user can select the three parameters to be included in the line. When leaving the configuration, the screen will be automatically created on the right side of the Home screen.

To delete a customized screen, the user should go to the screen to be deleted and press:

- Backups:

This menu allows making copies of the system and restore the system from one copy.

- Settings:

This menu contains all the general settings of the display:

- Contrast.
- Show / hide group index: it will show on the screen the subgroup index of the different parameters (ex: G1.1).
- Animations.
- Display language.
- Show / hide the value of variables.
- Variable editing mode.
- Go home when timeout: allows configuring if after timeout without interacting with the display, the screen should return to the home screen or not.
- Start with custom view: allows configuring if after each start of the equipment the home screen display will be the "custom screen 1" generated in the Options submenu or the default home screen.

- File download:

This menu allows the download of the MCF file, firmware files and files by bootloader.

- MCF: Allows the display to download the MCF file stored in the microcontroller that contains the definition of display screens, variables and properties.
- Firmware: If the microcontroller of the equipment has stored a new version, allows updating the software version of the display.
- Bootloader: Enabling the option allows to load software in .dfu format, allowing the display update by PC through USB port.

STATUS \& WARNING MESSAGES

In the status bar of the display we can see the status of the equipment, the average intensity consumed by the motor (A) and the motor speed (\%). It always remains visible on the display and can not be modified by the user:
a) Last fault
b) Current Warning message status
c) Current message status
d) Output current
e) Current speed

Note: User can access to the information displayed in status line via Modbus communication. See section 'Modbus Communication'.

List of status messages

The following table indicates the possible status of the drive.

Screen	Name	Description
OFF	Deactivated power	Drive power is deactivated.
ON	Activated power	Drive power is activated.
ACL	Accelerating	Drive is increasing the output frequency. Motor increasing in speed, it is accelerating.
RUN	Running	Drive is operating at reference speed. Operation at steady status.
DEC	Decelerating	Drive is decreasing the output frequency. Motor decreasing in speed, it is decelerating.
STP	Stopping	Drive is decreasing the output frequency due to a stop command. Motor is stopping by ramp until zero speed is reached.
FLT	Fault	The drive is in a fault status.
RFLT	Fault with ramp stop	This message will be shown whenever any of the faults related to analog input loss is triggered (FF22, F43, F55, F89, F104, F105, F106...). After the fault the drive will stop with ramp.
SPN	Flying start	'Flying start' operation must be configured if required. The SD750FR will search for the actual motor shaft speed once the drive has received a start command.
AUT	Automatic adjustment	The drive is obtaining the values of the motor magnitudes. I CAUTION: Although the motor is not running there is dangerous
BRK	Brake	coltage. Run Led will be lit during this process. Be careful to avoid damages and personal injury.
The DC brake of the motor is active.		

Screen	Name	Description
IHEAT	Non-condensing current is activated	SD750FR is injecting DC current to prevent moisture condensing within the motor. \qquad CAUTION: Although the motor is not running there is dangerous voltage. Run Led will be lit during this process. Be careful to avoid damages and personal injury.
DLY	Start Delay Time	When a delay time has been set in order to start the equipment, after the start command has been activated, this message will be displayed until this time has elapsed.
IS1	Inch speed 1	SD750FR is working according to inch speed 1 command and 'Start + Inch speed 1' mode is active. When operated in this mode the 'Start + Inch speed 1' command is dominant over other inputs programmed for 'Start' functionality. Therefore, if one input is configured as 'Start' and it is deactivated; despite this deactivated input, the drive will start when 'Start + Inch speed 1^{\prime} command is received. This is also valid for Inch speed 2 and 3.
IS2	Inch speed 2	SD750FR is working according to inch speed 2 command. 'Start + Inch speed 2 ' mode is active.
IS3	Inch speed 3	SD750FR is working according to inch speed 3 command. 'Start + Inch speed 3^{\prime} mode is active.

List of warning messages

(! notice

The warning messages specific to each optional board are not described in this manual, for further information check the corresponding manual (SD75MA--).

The following table details all the possible warning messages. If none exists, the message "NO WRN" will be displayed on the STATUS LINE of the display.

Warning	Acronym	Name	Description
W1	MOL	Motor overtemperature	This message will appear when motor thermal model is increasing the estimated motor temperature.
W3	MOC	Motor overload	Motor current is higher than the rated current value.
W4	DOC	Drive overload	This message will appear if the output current is higher than 125\% of the nominal current.
W5	ILT	Current limit	Current limit algorithm has been activated.
W6	TLT	Torque limit	Torque limit algorithm has been activated.
W7	VLT	Voltage limit	A high DC Link voltage level has been detected and the voltage limit control algorithm has been activated to protect the drive.
W8	ACO	lout Unbalance	Asymmetry in output currents of the drive has been detected.
W9	AVO	Vout Unbalance	Asymmetry in output voltage of the drive has been detected.
W10	AVI	Vin Unbalance	Asymmetry in input voltage of the drive has been detected.
W11	OVV	High input voltage	Input voltage of the equipment is reaching a dangerous level. The value is above the set value (protections settings).
W12	UNV	Low input voltage	Input voltage of the equipment is reaching a dangerous level. The value is below the set value (protections settings).
W13	SLMAX	Max speed limit	Motor speed has reached the maximum speed limit that is active at the moment.

Warning	Acronym	Name	Description
W14	CWR	Cells	The drive does not increase speed because input voltage is not enough. This warning only applies to permanent magnet synchronous motors.
W15	SLMIN	Min speed limit	Motor speed has reached the minimum speed limit that is active at the moment.
W16	RTL	Reg torque limit	Regenerative torque limit algorithm has been activated.
W17	MVR	Motor voltage remainder	After stopping the converter, the motor retains a voltage higher than 10% of its rated voltage.
W18	RIL	Regenerative I Limit	The motor current reaches the regeneration current limit set in the screen [G10.2.11].
W19	LVRT	Low voltage drivethrough	The voltage threshold is not being complied.
W20	REC_ON	Rectifier On	The starting time of the rectifier part of the motor is delayed.
W22	PIE	lin rect	The input current has reached 100% of the nominal current.
W23	DIE	I Unbalance rect	Reverse current has reached 75% of fault range "R19 lin Unbalanced".
W24	FTE	I gnd rect	The earth fault current has reached 75\% of the fault range "R20 Input ground".
W25	TPR	IGBT temp rect	The IGBTs of the rectifier bridge have reached $90^{\circ} \mathrm{C}$.
W26	MCC	CAN module comms	Some CAN frames of optical fiber communication have been lost.
W27	FAV	Fans rect	The power to the rectifier bridge fans fails. The "R22 IGBT temp" fault will reduce its value from $110^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$, to protect the drive components.
W28	PLL	PLL rect	The rectifier is synchronizing with the network.
W29	SWM	SW version rect	Software version is not supported.
W30	DWA	Diag advice rect	One of the diagnostic boards is reporting a warning.
W31	LCL	LCL contactor rect	LCL contactor feedback is not received correctly.
W36	DE_A	Digital A expansion	There is a communications problem with the digital I/O expansion board A.
W37	EPB	Profibus expansion	This warning message is related to the Profibus expansion board, for more details, please refer to the SD75MA06 manual.
W44	DE_B	Digital B expansion	There is a communications problem with the digital I/O expansion board B.
W45	EVCOMM	Expansion fans comm	There is a communications problem with the fans expansion board.
W46	AE_A	Analog A expansion	This warning message is related to the analogue I/O expansion
W47	AE_B	Analog B expansion	board, for more details, please refer to the SD75MA05 manual.
W48	PNE	Profinet expansion	This warning message is related to the Profinet expansion board, for more details, please refer to the SD75MA03 manual.
W49	EIPE	EthernetIP expansion	This warning message is related to the Ethernet/IP communication board, for more details, please refer to the SD75MA01 manual.
W50	NOSD	SD not present	The SD card is not present.
W51	SDCRRP	Corrupted SD	The SD card is removed or is no longer recognized.

FAULT MESSAGES. DESCRIPTIONS AND ACTIONS

When a fault occurs, the SD750FR will stop the motor, showing the fault in the display.
Without resetting the fault it is possible to navigate through the display lines where we will have access to the rest of the display parameters. Parameter SV9 - Last fault Registers, provides accurate equipment data at the exact moment in which the failure happened.

On the other hand, the LED of the display will show a fixed red color, and the fault message will remain until the fault is solved and the equipment is reset.

F 47	EFN	FLT 0.0 A	0.0%
	FAULT: 47		
	F47: Comms		
RESET	Clean status		
MENU	Analize fault		
ENTER	Accept		
	Fault Visualization		

(! NOTICE

The fault messages specific to each optional board are not described in this manual, for further information check the corresponding manual (SD75MA--).

Description of inverter bridge faults

DISPLAY	DESCRIPTION
F0	Drive is operative. There is no fault.
F1:Overcurrent	Output current has reached a dangerous level. Its value is above 220% of the drive rated current. Protection is activated instantaneously.
F2:Overvoltage	DC Bus voltage has reached a dangerous level, for 480VAC equipment: >850VDC and for 690VAC equipment: >1250 VDC. Hardware Protection. Drive will turn off the output to the motor.
F3:PDINT	DC Bus voltage and the output current of the equipment have reached dangerous levels.
F4:Overload U	
F5:Overload V	Internal protection within the appropriate IGBT semiconductor has acted.
F6:Overload W	
F7:Multiple Overload	The internal protection of several power semiconductors has acted simultaneously.
F8:Dinamic brake overload	The internal protection for the dynamic brake semiconductor has acted. Note: Only applies to sizes 1 and 2.
F10:Safety stop (STO)	Automatic internal protection of several of the IGBT semiconductors has acted or safe stop contact of the drive (connected to an external circuit by the user) has been activated (for example, emergency stop).
F11:Input voltage Lost	Power supply loss of any input phase for a time higher than $20 \mathrm{~ms} \mathrm{has} \mathrm{occurred}$.
F12:V input Unbal.	Input voltage imbalance greater than $\pm 10 \%$ of average input power supply of SD750FR for a time higher than 100 ms .
F13:V input high	Average supply voltage has exceeded the value set in "G11.1.3 Supply over voltage" for greater than the time set in "G11.1.4 Over voltage timeout".
F14:V input low	Average supply voltage is lower than the value set in "G11.1.1 Supply under voltage" for greater than the time set in "G11.1.2 Under voltage timeou".
F15:Bus ripple	Unstable bus voltage. There is a DC Bus voltage ripple higher than 100VDC during more than 1.1 seconds.
F16:Bus Overvoltage	DC Bus voltage has exceeded critical operating level, for 480VAC equipment: >850VDC and for 690VAC equipment >1250VDC. Software Protection.
F17:Bus under voltage	DC Bus voltage is lower than critical operating level, for 480VAC equipment: <350VDC and for 690VAC equipment <525VDC.
F18:Unbal.V output	Voltage imbalance of more than $\pm 5 \%$ of the average drive output average voltage for a time higher than 100 ms .
F19:Unbal.I output	Current imbalance of more than $\pm 25 \%$ of the average output motor current for a time higher than 1 second.
F20:Ground current	Current level to the ground has exceeded the level set in "G11.2.2 Ground current limit".
F21:Overcurrent limit	Motor current has exceeded the current limit set in "G10.2.1 Current limit" for the time set in "G10.2.2 I limit timeout".
F22:Torque limit	Motor torque has exceeded the torque limit set in parameter "G10.2.6 Torque limit" for the time set in 'G10.2.7 Torque limit timeout'.
F23:Min speed limit	Motor speed has reached the minimum speed limit specified in "G10.1.1 Minimum limit 1" and "G10.1.3 Minimum limit 2" parameters, for the time set in "G10.1.6 Minimum lim timeout".
F24:Regen. torque limit	Motor torque has exceeded the torque limit set in parameter "G10.2.13 Reg torque limit" for the time set in [G10.2.14 Reg torque limit time].
F25:Motor overload	Motor overload calculated by SD750FR thermal model has exceeded 110\%.
F26:Internal communications	There is a problem in the internal electronics.
F27:Softcharge	The DC Bus has not been charged in the expected time.
F28:Regenerative I Limit	Fault for regenerative converters. See the corresponding manual.
F31:SCR L1	Trip on conduction status of thyristor 1 . The thyristor has not turned on correctly.
F32:SCR L2	Trip on conduction status of thyristor 2 . The thyristor has not turned on correctly.
F33:SCR L3	Trip on conduction status of thyristor 3. The thyristor has not turned on correctly.
F34:IGBT temperature	IGBT internal temperature has reached the limit (see parameter SV2.5.2).
F35:DSP Watchdog	An unknown fault has reset the microprocessor of the control board.

DISPLAY	DESCRIPTION
F36: Encoder card com.	This fault message is related to the encoder board, for more details, please refer to manual SD75MA04.
F37: Encoder card timeout	
F38: Encoder	
F39:No load	There is no load connected to the drive output.
F40:PTC	The external trip device or PTC of the motor has operated. The circuit that controls the external temperature sensor (PTC, thermostat, etc.) of the motor winding has acted. (Connection between terminals 20 and 21). Values lower than $90 \Omega \pm 10 \%$ or greater than $1 \mathrm{~K} 5 \pm 10 \%$ generate the fault.
F41:Serial comms	Trip generated through RS232 or RS485 communication. Master (PLC or PC) is generating a fault in the SD750FR through serial communication.
F42:Analog input 1 missing	The SD750FR is not receiving a signal on analogue input 1 while "G4.2.14 Al1 loss protection" is set to 'Yes'. The signal introduced through this input has been lost.
F43:Analog input 2 missing	The SD750FR is not receiving a signal on the analogue input 2 while "G4.3.14 Al2 loss protection" is set to 'Yes'. The signal introduced through this input has been lost.
F44:Drive calibration	Internal reference voltage levels are wrong.
F45:Stop timeout	Trip generated by excessive delay in the motor stop. The time elapsed since the stop signal has exceeded the value set in "G11.2.1 Maximum stop timeout".
F46:Data fault	The non-volatile memory (EEPROM) is defective.
F47:Comms	Trip generated by excessive delay in serial communication. The time elapsed since the last successful reception frame has exceeded the value set in the screen "G20.2 COMMS F / T".
F48:Internal communications	Trip due to bad transfer of the data bus.
F49:Max speed limit	Motor speed has reached the maximum speed limit specified in "G10.1.2 Maximum limit 1" and "G10.1.4 Maximum limit 2" parameters, for the time set in "G10.1.5 Maximum lim timeout".
F50:Power supply	Internal power supply is not supplying the correct voltage. One voltage level has decreased to zero value for 100 ms approx.
F52:Lost control voltage	External digital control voltage signal fault.
F53:Max internal temperature	Internal temperature of the equipment control electronics chamber has reached a dangerous level.
F54:Watchdog reset	Internal fault of the microcontroller.
F55:Contactor Feedback	The digital input configured as "YES Digital RL" has not received the feedback of the digital output before the time set in [G4.1.27].
F56:External emergency stop	Digital input configured as 'EXTERN EMERGE' has been activated (NC contact).
F57:Pump overload	This fault is generated when the output current of the drive is higher than the current set in [G11.2.8] during the time adjusted in [G11.2.10].
F58:CAN interface	Reserved. Contact Power Electronics.
F59:Analog input 3 missing	The SD750FR has stopped receiving a signal through the analog input 3 while " G 4.4 .14 Al 3 loss protection" is set to "YES". The device has lost the signal entered through this input.
F60:Lost CIP c1 comms	This fault message is related to the Ethernet/IP communication board, for more details, please refer to
F61:EIP Fault	the SD75MA01 manual.
F62:CANopen comm lost	Reserved. Contact Power Electronics.
F63:CANopen sdo transmission	Reserved. Contact Power Electronics.
F64:CANopen transmission	Reserved. Contact Power Electronics.
F68:Pump underload	Fault generated when the output current of the inverter is lower than the value set in [G11.2.11] and the motor speed is higher than the value set in [G11.2.12] during the time set in [G11.2.13].
F69:Serial I/O comm	Communication fault with the I/ O control electronics.
F71:Exp digital I/O A comm	Failure in communication with the digital inputs and outputs expansion board A .
F72:Expansion Profibus comm	This fault message is related to the Profibus expansion board, for more details, please refer to manual SD75MA06.
F73:Comparator 1	Failure of the comparator 1
F74:Comparator 2	Failure of the comparator 2
F75:Comparator 3	Failure of the comparator 3
F76:STO Malfunction	Problem in the STO circuit.

DISPLAY	DESCRIPTION
F77:Incompat. IO Exp	Incompatible software version of the I/ O expansion board.
F78:Fremaq	The digital input " 25 Freemaq Fault" receives a fault from the associated filter contactor, the temperature of the filter has reached a dangerous value.
F79:PT100	PT100 sensor temperature fault.
F83:Torque slave	Fault of the torque slave.
F84:SCR temperature	SCR temperature fault (not included in frames 1 and 2 of the SD750FR).
F85:Fan power	A fault in the power supply to the cooling fans has occurred.
F87:Incompatible Dsp Version	Incompatible DSP software version.
F89:Analog input 4 missing	This fault message is related to the analogue I / O expansion board, for more details, please refer to manual SD75MA05.
F93:Time out optical fiber	This fault message is related to the optical fiber expansion board, for more details, please refer to manual SD75MA07.
F94:Sync lost	
F95:Slave	
F96:Master	
F99:PowerPLC	The PowerPLC macro has triggered a fault.
F100:Communication error	Failure in communication with the display.
F101:I/O exp version mismatch	This fault message is related to the analogue I / O expansion board, for more details, please refer to manual SD75MA05.
F102:Exp analog I/O A comm	
F103:Exp analog I/O B comm	
F104:Analog input 5 missing	
F105:Analog input 6 missing	
F106:Analog input 7 missing	
F107:Exp digital I/O B comm	Failure in communication with digital I / O expansion board B .
F108:Expansion Profinet comm	This fault message is related to the Profinet expansion board, for more details, please refer to manual SD75MA03.
F109:Exp EthernetIP comm	This fault message is related to the Ethernet / IP communication board, for more details, please refer to manual SD75MA01.
F110:Lost PNET c1 comms	This fault message is related to the Profinet expansion board, for more details, please refer to manual SD75MA03.
F111:Lost PNET c2 comms	
F112:Lost CIP c2 comms	This fault message is related to the Ethernet / IP communication board, for more details, please refer to manual SD75MA01.
F113:Lost PBUS c1 comms	This fault message is related to the Profibus expansion board, for more details, please refer to manual SD75MA06.
F114:Exp PT100 (1) fault	These fault messages are related to the PT100 expansion board, for more details, please refer to manual SD75MA08.
F115:Exp PT100 (2) fault	
F116:Exp PT100 (3) fault	
F117:Exp PT100 (4) fault	
F118:Exp PT100 (5) fault	
F119:Exp PT100 (6) fault	
F120:Exp PT100 (7) fault	
F121:Exp PT100 (8) fault	
F122:Incompat. PT100 Exp	
F123:Ethernet IP Exp Version	This fault message is related to the Ethernet / IP communication board, for more details, please refer to manual SD75MA01.
F124:Profinet Exp Version	This fault message is related to the Profinet expansion board, for more details, please refer to manual SD75MA03.
F125:Profibus Exp Version	This fault message is related to the Profibus expansion board, for more details, please refer to manual SD75MA06.

Description of rectifier bridge faults

DISPLAY	DESCRIPTION
R1:Overcurrent	The rectifier current has reached a dangerous level. Its value is above 220% of the rated current of the drive. Hardware protection is activated instantly.
R2:Overvoltage	The DC bus voltage has reached a dangerous level> $850 \mathrm{Vdc}(\mathrm{Vn}=400 \mathrm{Vac}$) and> 1250Vdc (larger sizes). HW protection. The inverter disconnects the motor output.
R3:Softcharge	The bus voltage does not reach Vdc.
R4:Overcurrent R+	The internal protection provided for the power IGBT semiconductor has tripped.
R5:Overcurrent R-	
R6:Overcurrent S+	
R7:Overcurrent S-	
R8:Overcurrent T+	
R9:Overcurrent T-	
R10:Multi Oc	
R11:Vin lost	Input voltage measurement has been lost.
R12:Vin Unbalanced	The inverse input voltage is greater than $+30 \%$ of the average input voltage for a time higher than 100 ms .
R13:V con lost	Contactor voltage measurement has been lost.
R14:Vbus lost	The DC Bus voltage measurement has been lost.
R15:Softcharge cont	The contactor signal has been lost. The soft load contactor has triggered a fault, or the pickup signal (feedback) has been lost. The soft load contactor was closed at the time of giving the order. Check the wiring (not resettable).
R16:LCL Temp	The LCL filter has reached a dangerous temperature level.
R17:Vbus low	Low bus voltage detected $<450 \mathrm{Vdc}(\mathrm{Vn}=400 \mathrm{Vdc}$) and 800 Vdc (larger sizes).
R18:Fiber Comms	Fiber optic CAN communications have failed.
R19:lin Unbalanced	The reverse input current has reached the limit set in G24.3.3 for more than 10 ms .
FR20:Input ground	The level of leakage current to earth has reached the limit established in G24.3.4.
R21: lin limit	The input current has exceeded the limit set in G24.3.1 for the time set in G24.3.2.
R22:IGBT temp	The temperature of the IGBT of the rectifier bridge has reached $110^{\circ} \mathrm{C}$.
R23:I Hall	Incorrect rectifier current hall sensor connection.
R24:LCL feedback	LCL contactor feedback.
R25:Diag node	A diagnostic card does not communicate over CAN.
R26:Diag bus	Diagnostic bus is not working.
R29:Rect. I2C DSP	Failure in the rectifier drive selection.
R34:Rect. Drive-Select	Different DSP software versions of the rectifier and the inverter bridges.
R37:Rect. SW	Power failure or inconsistent parameter setting.

List of inverter bridge faults and troubleshooting

DISPLAY	POSSIBLE CAUSE	ACTIONS
F0	-	-
F1:Overcurrent	Motor output short circuit:	Check output cables and motor for possible wiring faults or short circuits.
	Wiring fault.	
	Circuit faul.	
	Motor fault.	
F2:Overvoltage	High voltage peak on the input.	Check conditions of input power supply. Decrease deceleration ramps.
	High load regeneration.	
	Deceleration ramp too high (parameters G5.2.1 and G5.2.2).	
F3:PDINT	See faults F1 and F2.	See faults F1 and F2.
F4:Overload U	Short circuit.	Check if there are possible wiring faults or a motor fault. If the fault persists after disconnecting output wires request technical assistance.
F5:Overload V		
F6:Overload W		
F7:Multiple Overload	See faults F4, F5 and F6.	See actions for faults F4, F5 and F6 (individual overloads).
F8:Dinamic brake overload	Short circuit or overload in the braking resistor.	Check the braking resistor. If the fault persists once the cables of the braking resistor have been disconnected, request technical assistance.
F10:Safety stop (STO)	See possible causes for faults F4-F9.	See actions for F4-F9.
	Safe stop contact of the drive has been activated.	Revise the external circuit, where the safe stop contact is connected, that produces the activation of this contact into the drive.
F11:Input voltage Lost	Input power is incorrect, damaged fuses.	Check conditions of input power supply.
	Input wiring is incorrect.	Check wiring.
F12:V input Unbal	Input power is incorrect, damaged fuses.	Check conditions of input power supply.
	Input wiring is incorrect.	Check wiring.
F13:V input high	Input power is incorrect.	Check input power conditions.
	Incorrect setting of parameter [G11.1.3 Supply over voltage].	Check parameters settings.
F14:V input low	Input power is incorrect, damaged fuses.	Check input power conditions.
	Incorrect setting of parameter [G11.1.1 Supply under voltage].	Check parameters settings.
F15:Bus ripple	Input power is incorrect.	Check input power conditions, load type of the application, and all the motor mechanical parts. If the fault persists after disconnecting output wires, request technical assistance.
	Motor is driving an unstable load.	
	One of the input fuses is damaged.	
F16:Bus Overvoltage	High voltage peak on the input.	Check conditions of input power supply.
	High load regeneration.	Check stop conditions of the drive.
	Deceleration ramp is too high (parameters G5.2.1 and G5.2.2).	Decrease deceleration ramps.
F17:Bus under voltage	Input power is wrong, damaged fuses.	Check conditions of input power supply.
F18:Unbal.V output	Motor is driving an unstable load.	Check motor circuit completely in case of possible wiring faults or motor fault. If the fault persists after disconnecting output wires, request technical assistance.
	Motor wiring fault.	
	Motor is wrong.	
F19:Unbal.I output	Motor is supporting unstable loads.	Check motor circuit completely in case of possible wiring faults or motor fault.
	Motor wiring fault.	
	Motor is wrong.	

DISPLAY	POSSIBLE CAUSE	ACTIONS	
F20:Ground current	Motor or wiring has short-circuited to ground.	Disconnect the motor and wiring of the SD750FR and check motor insulation.	
	Ground is incorrectly connected or wrong.	Check and improve the ground connection system.	
F21:Overcurrent limit	Motor stalled. Heavy load.	Check the motor load.	
	Motor mechanical brake is coupled.	Increase maximum current limit.	
F22:Torque limit	Motor stalled. Heavy load.	Check the motor load.	
	Motor mechanical brake is coupled.	Increase maximum torque limit.	
F23:Min speed limit	Speed reference has reached the speed limit for the time set in.	Check the reference source and the motor load.	
	Motor speed is out of control or motor is not accelerating due to the load.	Verify speed limits.	
		Decrease deceleration ramp.	
F24:Regen. torque limit	Excessive regeneration is produced due to deceleration ramp to high.	Check the setting of parameters related to regenerating current limitation (G 10.12 and G 10.13).	
F25:Motor overload	High current used by the motor due to heavy load.	Check motor load.	
	The load exceeds the capacity of motor cooling under normal operating conditions.	Check the motor load. Check the setting of parameters "G2.1 MTR CUR" and "G2.7 MTR COOL" relating to the motor thermal model. Increasing the parameter "G2.7 MTR COOL", can be undertaken when there is a motor PTC fitted and it is connected to the SD750FR.	
	Incorrect setting of the thermal model parameters.		
	Phase loss of the motor or a fault in motor windings.		
F26:Internal communications	There is a problem in the internal electronics.	Contact the Technical Service.	
F27:Softcharge	The soft charge resistors of the equipment are not working correctly.	Try resetting the fault. Disconnect and connect the power again. If the fault persists, contact Power Electronics technical service.	
F28:Regenerative I Limit	Regenerative VSD fault.	See the corresponding manual.	
F31:SCR L1	A conduction fault has been produced in the corresponding thyristor. The thyristor is OFF when it should be on.	Try to reset the fault. Disconnect and re-connect again the input power. If the fault persists request technical assistance.	
F32:SCR L2			
F33:SCR L3			
F34:IGBT temperature	Blocked or poor ventilation.	Check if there is an object blocking ventilation. Improve the cooling.	
	Heat sink and cooling fan fault on the SD750FR.	Check if the heat sink and the cooling fan are operating correctly.	
	The internally configured maximum value has been exceeded.	Check the cooling and thermal conditions. Request technical assistance.	
F35:DSP Watchdog	Input power fault.	Reset the fault; if it persists, request technical assistance.	
F36: Encoder card com.	This fault message is related to the encoder board, for more details, please refer to manual SD75MA04.		
F37: Encoder card timeout			
F38: Encoder			
F39:No load	There is no load on the output of the equipment.	Check the motor is connected.	
		Check that the current meters work correctly (current transducers, wiring).	
F40:PTC	Actuation of the external trigger device.	Check the external trip switch (if any).	
	The motor is overheated (the motor load exceeds the cooling capacity at operating speed).	Check the temperature of the motor.	
		To reset the fault, the motor must be at a normal temperature.	
	Fault in the sensor connection.	Check the sensor connection.	

DISPLAY	POSSIBLE CAUSE	ACTIONS
F41:Serial comms	Fault triggered by a computer via serial communication.	Disconnect the communication and check if the fault persists.
F42:Analog input 1 missing	Analogue input cable has become loose or disconnected (terminals 17 y 18).	Verify the wiring and the device which provides the analogue signal.
F43:Analog input 2 missing	Analogue input cable has become loose or disconnected (T19 y T20).	Verify the wiring and the device which provides the analogue signal.
F44:Drive calibration	Incorrect internal reference voltage levels.	Check the drive select. Request technical assistance
	Deceleration ramps (parameters G5.2.1 and G5.2.2) are too slow.	Verify that the time set in parameter "G11.2.1 Max stop timeout" to stop the system after setting
	SD750FR is voltage limiting voltage due to regeneration from the motor.	deceleration ramps and checking the system performance.
F46:Data fault	Integrated circuit fault.	Request technical assistance.
	Communications cable is loose or has been cut.	Verify the wiring of communications system.
F47.Com	Master device has not sent valid data in the required frame or it has sent incorrect data.	Verify the data and settings of the master device.
F48:Internal communications	Input power fault.	Reset the equipment and if the fault persists request technical assistance.
	Speed reference has reached the speed limit for the time set in.	Check the reference source and the motor load.
	Motor speed is out of control or motor is accelerating because of the load.	Check the reference source and the motor load.
F50:Power supply	Damaged power supply.	Reset the equipment and if the fault persists request technical assistance.
F5	Incorrect network voltage.	Check power conditions.
	Incorrect wiring.	Check wiring.
Max internal	The internal temperature limits of the equip	Verify that the ambient conditions are proper for the equipment.
temperature	have been exceeded.	Make sure that there is nothing obstructing the cooling fans (dust, papers, dirt, etc.) and that they rotate correctly.
F54:Watchdog reset	There has been a failure in the microcontroller.	Remove power and reconnect it. If the fault persists contact Power Electronics.
F55:Contactor Feedback	The timeout set in parameter G4.1.27 has been exceeded.	Verify the feedback of the digital output configured in parameter G4.1.27.
F56:External emergency stop	An external trip has been produced by closing a contact on the digital input configured in this option.	Verify the wiring of digital input.
		Check the installation.
F57:Pump overload	High current used by the motor due to heavy load.	Check the motor load.
	The load exceeds the capacity of the motor cooling under normal operating conditions.	Check if the motor cooling is appropriate.
	Incorrect setting of the parameters related to pump overload.	Check the setting of the parameters related to pump overload in group G11.
	Phase loss of the motor or a fault in motor windings.	Contact Power Electronics.
F58:CAN interface	Reserved.	Contact Power Electronics.
F59:Analog input 3 missing	Analogue input 3 missing	Check wiring and the equipment that provides the analogue signal.
F60:Lost CIP c1 comms	This fault message is related to the Ethernet/IP communication board, for more details, please refer to manual SD75MA01.	
F61:EIP Fault		
F62:CANopen comm lost	Reserved.	Contact Power Electronics.
F63:CANopen sdo transmission	Reserved.	Contact Power Electronics.

DISPLAY	POSSIBLE CAUSE	ACTIONS			
F64:CANopen transmission	Reserved.	Contact Power Electronics.		F68:Pump underload	The minimum value set in G11.2.11 has been reached and the value set in G11.2.12 has been exceeded.
:---	:---				
F6eck the motor load.					
F69:Serial I/O comm	The serial I/ O board does not work correctly.				

DISPLAY	POSSIBLE CAUSE	ACTIONS
F100:Communication error	Communication between the display and the microprocessor is not correct.	Check wiring. Consult with Power Electronics.
F101://O exp version mismatch	This fault message is related to the analogue I/O expansion board, for more details, please refer to manual SD75MA05.	
F102:Exp analog I/O A comm		
F103:Exp analog I/O B comm		
F104:Analog input 5 missing		
F105:Analog input 6 missing		
F106:Analog input 7 missing		
F107:Exp digital I/O B comm	Communication with the digital I/O expansion board B has been lost.	Consult with Power Electronics.
F108:Expansion Profinet comm	This fault message is related to the Profinet expansion board, for more details, please refer to manual SD75MA03.	
F109:Exp EthernetIP comm	This fault message is related to the Profinet expansion board, for more details, please refer to manual SD75MA01.	
F110:Lost PNET c1 comms	This fault message is related to the Profinet expansion board, for more details, please refer to manual SD75MA03.	
F111:Lost PNET c2 comms		
F112:Lost CIP c2 comms	This fault message is related to the Ethernet/IP communication board, for more details, please refer to manual SD75MA01.	
F113:Lost PBUS c1 comms	This fault message is related to the Profibus expansion board, for more details, please refer to manual SD75MA06.	
F114:Exp PT100 (1) fault	These fault messages are related to the PT100 expansion board, for more details, please refer to manual SD75MA08.	
F115:Exp PT100 (2) fault		
F116:Exp PT100 (3) fault		
$\begin{aligned} & \text { F117: Exp PT100 (4) } \\ & \text { fault } \\ & \hline \end{aligned}$		
F118:Exp PT100 (5) fault		
F119:Exp PT100 (6) fault		
$\begin{aligned} & \text { F120:Exp PT100 (7) } \\ & \text { fault } \\ & \hline \end{aligned}$		
$\begin{aligned} & \text { F121:Exp PT100 (8) } \\ & \text { fault } \\ & \hline \end{aligned}$		
F122:Incompat. PT100 Exp		
F123:Ethernet IP Exp Version	This fault message is related to the Ethernet / IP communication board, for more details, please refer to manual SD75MA01.	
F124:Profinet Exp Version	This fault message is related to the Profinet expansion board, for more details, please refer to manual SD75MA03.	
F125:Profibus Exp Version	This fault message is related to the Profibus expansion board, for more details, please refer to manual SD75MA06.	

List of rectifier bridge faults and troubleshooting

DISPLAY	POSSIBLE CAUSE	ACTIONS
R1:Overcurrent	The input current measure signal has been lost.	Check the current sensors are correctly fastened.
	The input voltage measure signal has been lost.	Check the voltage sensors are correctly fastened.
	Incorrect setting of the current control loop.	Readjust the parameters G24.2.3 and G24.2.4.
	A voltage dip has occurred.	Try to reset the fault. If the fault persists contact Power Electronics for technical service.
R2:Overvoltage	Deceleration ramp too high (parameters "G5.2.1 Deceleration rate 1" and "G5.2.2 Deceleration rate 2") or rectifier's PID Vdc parameters are too slow.	Decrease deceleration ramps. If the fault persists contact Power Electronics for technical service.
R3:Softcharge	Try to reset the fault. Disconnect and reconnect again the input power. If the fault persists, contact Power Electronics for technical service.	Try to reset the fault. Disconnect and re-connect again the input power. If the fault persists, contact Power Electronics for technical service.
R4:Overcurrent R+ R5:Overcurrent R- R6:Overcurrent S+ R7:Overcurrent S- R8:Overcurrent T+ R9:Overcurrent T- R10:Multi Oc	Rectifier bridge IGBTs desaturation. See possible causes for faults F4-F8.	Check if there is possible input wiring faults. If the fault persists after disconnecting input wires request technical assistance.
R11:Vin lost	Input power phase lost.	Check the input wiring is correctly installed.
	Input voltage measure has been lost.	Check the voltage sensors are correctly fastened.
R12:Vin Unbalanced	Unbalance voltage input.	Possible internal wiring disconnection. Check the input wiring is correctly installed and the status of the input power supply is correct.
R13:V con lost	Voltage lost in the capacitor of the LCL filter.	Possible internal wiring disconnection. Disconnect and re-connect again the input power. If the fault persists contact Power Electronics for technical service.
R14:Vbus lost	DC bus voltage signal is lost.	
R15:Softcharge cont	Feedback signal from the softcharge contactor is lost. Feedback is wrong wired.	Check that voltage signal connector is correctly fastened. If the fault persists contact Power Electronics for technical service. When the fault is produced when the VFD is power supplied, stop, check the contactor and start.
R16:LCL Temp	The fans of the LCL filter zone are faulty.	Check that the fans rotate smoothly and there is not any obstacle.
R17:Vbus low	Low bus voltage detected.	Input voltage is lost and the electronics power supply keep powered.
R18:Fiber Comms	Fiber optic cable is interrupted.	Check fiber optic cable about visual damages.
R19:lin Unbalanced	Unstable grid.	Check the parameter "G24.3.3 I imbalance" value. If the fault persists contact Power Electronics technical service.
	Wiring fault.	
FR20:Input ground	Wiring fault.	Check power wiring about visual damages.
R21:lin limit	Input short circuit.	Check the parameter "G24.3.1 I lim rec" value and the load.
	Wiring fault.	
	Circuit fault.	
R22:IGBT temp	See possible causes for F34 fault.	See possible solutions described for F34 fault.
R23:I Hall	Incorrect rectifier current hall sensor connection.	Check the current hall sensor wires.

DISPLAY	POSSIBLE CAUSE	ACTIONS
R24:LCL feedback	The feedback wire is not connected. The order wire is not connected. There is not contactor.	Review the LCL contactor wires.
R25:Diag node	The ID of one target is wrong.	Review the selector positions
R26:Diag bus	The communication bus is wrongly wired	Review the communication bus wires Review the end line jumpers
R29:Rect. I2C DSP	Failure in the rectifier drive selection.	Verify the drive selection. Consult with Power Electronics.
R34:Rect. Drive-Select	The DSP software versions of the rectifier and anverter bridges are different.	Check the two software versions with the display. Check CAN communications.
R37:Rect. SW	Power failure or inconsistent parameter setting.	Remove and restart the SD750FR. If the same fault occurs, initialize all the parameters (use parameter G1.3-Initialize) and re-energize. If the fault persists, contact Power Electronics for technical service.

VISUALIZATION PARAMETERS

These parameters constantly indicate the input signal status and dynamic parameter status of the SD750FR. Visualization lines are the second and the third lines. To access these parameters, user must enter the Menu by pressing Menu-Parameters-Visualization.

F 50 A0	OFF 0.0A	0.0\%	F 50	A0	OFF	0.0A	0.0\%	F 50	A0	OFF	0.0A	0.0\%
MENU			PARAMETERS					VISUALIZATION				
Parameters		-	Confi	ation			-	Grou	V1:	visua	ation	D
Versions		-	Visua	ation			-	Grou	V2:	visual	ation	,
Options		,	Favo				-	Grou	V:	ualiz		,
Backups		,						Grou	V: In	ualiza		,
Settings		,						Grou	5: P	Param	ters	,
File download		-						Grou	V6:			,
								Grou	V8:	nd tim		,

Navigation in Settings

KEY	DESCRIPTION
	To access an area, group, subgroup or parameter, the user must scroll using the arrows up and down the display, and press the right arrow
	Pressing the right arrow user accesses to each group. To exit and return to the previous one, the user must press the left arrow.

There is also the possibility of creating favorite display screens that allow quick access to information.

! NOTICE

Parameters specific to each optional board are not described in this manual, for further information check the corresponding manual (SD75MA--).

Group V1: Motor visualization

This group shows information related to motor parameters.
Note: The parameter associated with the optical fiber board (SV1.17) will only be displayed if an optical fiber expansion board has been connected. Check document SD75MA07 for further information.

Screen	Units	Description
SV1.1-Speed reference $=0.0$ \%	\%	Shows the present reference value of speed which is applied to the motor.
SV1.2-Torque reference $=0.0 \%$	\%	Shows the present reference value of torque which is applied to the motor.
SV1.3-Motor speed (\%) $=0.0$ \%	\%	Shows the motor speed in percentage.
SV1.4-Motor speed (rpm) $=0 \mathrm{rpm}$	rpm	Shows the motor speed in revolutions per minute.
SV1.5-Motor frequency $=0.0 \mathrm{~Hz}$	Hz	Shows the frequency being applied to the motor.
SV1.6-Motor voltage $=0 \mathrm{~V}$	V	Shows the present voltage applied to the motor.
SV1.7-Motor current $=0.0 \mathrm{~A}$	A	Shows the present current flowing to the motor.
SV1.8-Motor torque $=0.0 \%$	\%	Shows the present torque applied to the motor.
SV1.9-Motor phi cosine $=0.85$	-	Shows the motor's cos phi.
SV1.10-Motor power $=0.0 \mathrm{~kW}$	kW	Shows the instantaneous power consumption of the motor.
SV1.11.1-U motor current= 0.0 A	A	Shows the instantaneous current of each phase of the motor (U).
SV1.11.2-V motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current of each phase of the motor (V).
SV1.11.3-W motor current= 0.0 A	A	Shows the instantaneous current of each phase of the motor (W).
SV1.12.1-U-V motor voltage $=0.0 \mathrm{~V}$	V	Shows the instantaneous voltage applied (UV).
SV1.12.2-V-W motor voltage $=0.0 \mathrm{~V}$	V	Shows the instantaneous voltage applied (VW).
SV1.12.3-W-U motor voltage $=0.0 \mathrm{~V}$	V	Shows the instantaneous voltage applied (UW).
SV1.13-PTC Status $=$ No	-	Shows whether the motor PTC is connected or disconnected. Visible if [G4.1.10 = PTC].
SV1.14-Estimated. Motor temp(\%) $=0.0$ \%	\%	Shows the estimated motor temperature.
SV1.15-Motor temperature $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the motor temperature measured with the PT100 sensor. Visible if [G4.4.0 = YES].

Group V2: Drive visualization

This group shows respective information to the drive parameters.

Screen	Units	Description
SV2.1.1-L1-L2 supply voltage $=0 \mathrm{~V}$	V	Shows the input instantaneous voltage applied to the drive (L1-L2).
SV2.1.2-L2-L3 supply voltage $=0 \mathrm{~V}$	V	Shows the input instantaneous voltage applied to the drive (L2-L3).
SV2.1.3-L3-L1 supply voltage $=0 \mathrm{~V}$	V	Shows the input instantaneous voltage applied to the drive (L3-L1).
SV2.2-Input voltage average $=0 \mathrm{~V}$	V	Shows the average input voltage to the drive.
SV2.3-DC bus voltage $=\mathbf{0} \mathrm{V}$	V	Shows DC Link voltage of the drive.
SV2.4-Input frequency $=0.0 \mathrm{~Hz}$	Hz	Shows the frequency of the drive input voltage.
SV2.5.1-Drive temperature $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the temperature measured inside the electronics chamber of the drive.
SV2.5.2-IGBT temperature $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the temperature measured at the power stage of the drive output.
SV2.10-Relative Humidity $=0^{\circ} \%$	$\%$	Shows the internal relative humidity of the converter.

Group V3: External visualization

Note: The parameters associated with analogue inputs 4 to 7 (parameters SV3.10 to SV3.21) and analogue outputs 3 to 6 (parameters SV3. 28 to SV3.33) will only be displayed if an inputs and outputs expansion board has been connected. Check document SD75MA05 for further information.

Screen	Units	Description
SV3.1-Al1 value $=0.00 \mathrm{~V}$	See units G4.2.3	Shows the value of Analogue Input 1 (Al1).
SV3.2-Al1 percentage $=100.0$ \%	\%	Shows the percentage with respect to the voltage allowed by Analogue Input 1 (Al1).
SV3.3-Al1 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	$\begin{gathered} \text { See units } \\ \text { G4.2.2 } \\ \hline \end{gathered}$	Shows the value of sensor 1 associated to the Analogue Input 1.
SV3.4-Al2 value $=0.00 \mathrm{~mA}$	mA	Shows the value of the Analogue Input 2. Visible if [G4.3.0 = NO].
SV3.5-Al2 percentage $=100.0 \%$	\%	Shows the value of the PID reference proportional to the Analogue Input 2 signal. Visible if [G4.3.0 = NO].
SV3.6-Al2 sensor value $=0.0 \mathrm{Bar}$	See units G4.3.2	Shows the value of sensor 2 associated to the Analogue Input 2. Visible if [G4.3.0 = NO] and [G4.3.1 = YES].
SV3.7-Al3 value $=0.00 \mathrm{~V}$	$\begin{gathered} \text { See units } \\ \text { G4.4.3 } \end{gathered}$	Shows the value of sensor 3 associated to the Analogue Input 3. Visible if [$\mathrm{G} 4.4 .0=\mathrm{NO}$].
SV3.8-Al3 percentage $=100.0 \%$	\%	Shows the value of the PID reference proportional to the Analogue Input 3 signal. Visible if [G4.4.0 $=$ NO].
SV3.9-Al3 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	See units G4.4.2	Shows the value of sensor 3 associated to the Analogue Input 3 . Visible if [G4.4.1 = YES].
SV3.22-A01 value $=0.00 \mathrm{~V}$	$\begin{gathered} \text { See units } \\ \text { G8.2.2 } \end{gathered}$	Shows the value of the Analogue output 1.
SV3.23-A01 percentage $=0.0 \%$	\%	Shows the magnitude value associated to the Analogue Output 1.
SV3.24-AO2 value $=0.00 \mathrm{~V}$	$\begin{gathered} \text { See units } \\ \text { G8.3.2 } \end{gathered}$	Shows the value of the Analogue output 1. Visible if [G8.3.0 = NO].
SV3.25-AO2 percentage $=0.0 \%$	\%	Shows the magnitude value associated to the Analogue Output 2.
SV3.26-AO3 value $=0.00 \mathrm{~V}$	$\begin{gathered} \text { See units } \\ \text { G8.4.2 } \end{gathered}$	Shows the value of the Analogue output 3.
SV3.27-AO3 percentage $=0.0 \%$	\%	Shows the magnitude value associated to the Analogue Output 3.
SV3.34-DI status $=000000$	-	Shows the value of the digital inputs (6,10 or 16 bits, depending on the number of expansion boards connected).
SV3.35-Output relays status $\mathbf{= 0 0 0}$	-	Shows the value of the states of the output relays (3,8 or 11 bits, depending on the number of expansion boards connected).
SV3.37-Fans $=$ Off	-	Shows the status of the fans (on / off).
SV3.38-Pulse Input $=0.0 \mathrm{l} / \mathrm{s}$	$\begin{gathered} \text { See units } \\ \text { G4.3.2 } \end{gathered}$	Shows the measurement of the pulse input. Visible if [G4.3.0 $=$ YES].

Group V4: Internal visualization

Screen	Units	Description
SV4.1-Present fault = 0	-	Shows the present fault code.
SV4.2-Nominal V = 500 V	V	Shows the drive rated voltage.
SV4.3-Nominal I = 46.0 A	Shows the drive rated current.	
SV4.4-PID setpoint = 100.0 \%	\%	Shows the reference value in PID mode of the equipment standard program.
SV4.5-PID feedback value = 100.0 \%	\%	Shows the feedback value in PID mode of the equipment standard program.
SV4.8.1-Comp status 1 = 0	Shows the status of the three comparators (C1).	
SV4.8.2-Comp status 2 = 0	- Shows the status of the three comparators (C2).	
SV4.8.3-Comp status 3 = 0	Shows the status of the three comparators (C3).	
SV4.9-Prior to fault status = OFF	-	Shows the status of the drive before the fault.

Group V5: Programmable parameters

Screen	Units	Description
SV5.1-Speed local reference $=100.0$ \%	\%	Shows the speed reference in local mode.
SV5.2-PID local setpoint $=100.0$ \%	\%	Shows the PID setting in local mode.
SV5.3-Multireference $1=10.00 \%$	\%	Shows the speed value assigned to Multi-reference 1.
SV5.4-Multireference $2=20.00 \%$	\%	Shows the speed value assigned to Multi-reference 2.
SV5.5-Multireference 3 = 30.00%	\%	Shows the speed value assigned to Multi-reference 3.
SV5.6-Multireference $4=40.00 \%$	\%	Shows the speed value assigned to Multi-reference 4.
SV5.7-Multireference $5 \mathbf{5 0 . 0 0} \%$	\%	Shows the speed value assigned to Multi-reference 5.
SV5.8-Multireference 6 = 60.00%	\%	Shows the speed value assigned to Multi-reference 6.
SV5.9-Multireference 7 = 70.00%	\%	Shows the speed value assigned to Multi-reference 7.
SV5.10-Inch speed $1=0.00 \%$	\%	Shows the fixed speed 1.
SV5.11-Inch speed $2=0.00 \%$	\%	Shows the fixed speed 2.
SV5.12-Inch speed $3=0.00 \%$	\%	Shows the fixed speed 3 .

Group V6: Registers

Screen	Units	Description
SV6.1.1-Total days counter $=0$ days	Days	Shows the total time during which the drive is running (RUN).
SV6.1.2-Total hours counter $=0 \mathrm{~h}$	Hours	Shows the total time during which the drive is running (RUN).
SV6.2.1-Partial days counter $\mathbf{~} 0$ days	Days	Shows the total time during which the drive is running (RUN).
SV6.2.2-Partial hours counter $=0 \mathrm{~h}$	Hours	Shows the partial time during which the drive is running (RUN).
SV6.3-Clear partial counter $=$ No	-	Allows resetting the counter of partial time for running status (RUN).
SV6.4.1-Mot. Total En. GWh = 0 GWh	GWh	Shows the drive total energy consumption.
SV6.4.2-Mot. Total En. MWh = 0 MWh	MWh	Shows the drive total energy consumption.
SV6.4.3-Mot. Total En. $\mathrm{KWh}=0 \mathrm{kWh}$	kWh	Shows the drive total energy consumption.
SV6.5.1-Mot. Partial En. GWh = 0 GWh	GWh	Shows the drive partial energy consumption.
SV6.5.2-Mot. Partial En. MWh = 0 MWh	MWh	Shows the drive partial energy consumption.
SV6.5.3-Mot. Partial En. KWh = 0 kWh	kWh	Shows the drive partial energy consumption.
SV6.6-Mot. Partial En. reset $=$ No	-	Allows resetting the counter of partial energy.
SV6.7.1-Rect. Consum. En. GWh = 0 GWh	GWh	Shows the regenerative stage total energy consumption.
SV6.7.2-Rect. Consum. En. MWh = 0 MWh	MWh	Shows the regenerative stage total energy consumption.
SV6.7.3-Rect. Consum. En. KWh = 0 kWh	kWh	Shows the regenerative stage total energy consumption.
SV6.8.1-Rect. Suppl. En. GWh = 0 GWh	GWh	Shows the regenerative stage partial energy consumption.
SV6.8.2-Rect. Suppl. En. MWh = 0 MWh	MWh	Shows the regenerative stage partial energy consumption.
SV6.8.3-Rect. Suppl. En. KWh = 0 kWh	kWh	Shows the regenerative stage partial energy consumption.

Group V7: Rectifier info

Screen	Units	Description
SV7.1-Input power $=0.0 \mathrm{~kW}$	kW	Shows the power input value of the rectifier.
SV7.2-Drive input current $\mathrm{R}=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the rectifier (U).
SV7.3-Drive input current S $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the rectifier (V).
SV7.4-Drive input current T $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the rectifier (W).
SV7.5-Rect. Cos Phi $=0.00$	-	Shows the motor's cos phi or Displacement Power Factor (DPF).
SV7.6-Rect. IGBT temp. $=0{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the IGBTs temperature.
SV7.7-Frequency of PLL $=0.0 \mathrm{~Hz}$	Hz	Shows the internal frequency of the PLL.
SV7.8-THD input $=0.00 \%$	\%	Shows the input current distortion of the rectifier.
SV7.9-L1-L2 supply voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (L1-L2).
SV7.10-L2-L3 supply voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (L2-L3).
SV7.11-L3-L1 supply voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (L3-L1).
SV7.12-DC bus voltage $=0 \mathrm{~V}$	V	Shows the DC bus voltage.

Group V8: Date and time

Screen	Units	Description
SV8.1-Seconds $=0$	-	Shows the seconds of the current time.
SV8.2-Minutes $=0$	-	Shows the minutes of the current time.
SV8.3-Hours $=0$	-	Shows the hours of the current time.
SV8.4-Day $=1$	-	Shows the day of the current date.
SV8.5-Month $=1$	-	Shows the month of the current date.
SV8.6-Year $=2015$	-	Shows the year of the current date.

Group V9: Last fault registers

These registers show the conditions that were present at the moment when the last fault occurred. They are divided into the following subgroups:

Subgroup V9.1: Motor registers

This subgroup shows information related to the drive characteristics on an individual level.
Note: The parameters associated with the encoder (SV9.1.16 and SV9.1.17) will only be displayed if an optional encoder expansion board has been connected. Check document SD75MA04 for further information.

Screen	Units	Description
SV9.1.1-Speed reference $=0.0 \%$	\%	Shows the value of the current speed reference.
SV9.1.2-Torque reference $=0.0 \%$	\%	Shows the value of the current torque reference.
SV9.1.3-Motor speed (\%) $=0.0$ \%	\%	Shows the motor speed in percentage.
SV9.1.4-Motor speed (rpm) $=0 \mathrm{rpm}$	rpm	Shows the motor speed in revolutions per minute.
SV9.1.5-Motor frequency $=0.0 \mathrm{~Hz}$	Hz	Shows the frequency which the motor is running.
SV9.1.6-Motor voltage $=0 \mathrm{~V}$	V	Shows the current voltage applied to the motor.
SV9.1.7-Motor current $=0.0 \mathrm{~A}$	A	Shows the present current to the motor.
SV9.1.8-Motor torque $=0.0$ \%	\%	Shows the current torque applied to the motor.
SV9.1.9-Motor phi cosine $=0.85$	-	Shows the motor power factor.
SV9.1.10-Motor power $=0 \mathrm{~kW}$	kW	Shows the instantaneous power consumption of the motor.
SV9.1.11.1-U motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the motor (U).
SV9.1.11.2-V motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the motor (V).
SV9.1.11.3-W motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the motor (W).
SV9.1.12.1-U-V motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (U-V).
SV9.1.12.2-V-W motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (V-W).
SV9.1.12.3-W-U motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (W-U).
SV9.1.13-PTC Status = No	-	Shows whether the motor PTC is connected or not. Visible if [G4.1.10 = PTC].
SV9.1.14-Motor temperature(\%) = 0.0 \%	\%	Shows the theoretical heating level of the motor.
SV9.1.15-Motor temperature $=0{ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the temperature of the motor measured with the PT100 sensor. Visible if [G4.4.0 = YES].

Subgroup V9.2: Drive registers

Screen	Units	Description
SV9.2.1.1-L1-L2 supply volt $=0 \mathrm{~V}$	V	Shows the instantaneous input voltage between L1 and L2.
SV9.2.1.2-L2-L3 supply volt $=0 \mathrm{~V}$	V	Shows the instantaneous input voltage between L2 and L3.
SV9.2.1.3-L3-L1 supply volt $=0 \mathrm{~V}$	V	Shows the instantaneous input voltage between L3 and L1.
SV9.2.2-Input voltage average $=0 \mathrm{~V}$	V	Shows the average value of input voltages between phases.
SV9.2.3-DC bus voltage $=0 \mathrm{~V}$	V	Shows the DC bus voltage.
SV9.2.4-Input frequency $=0.0 \mathrm{~Hz}$	Hz	Shows the frequency of the input voltage.
SV9.2.5-Drive temperature $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the temperature of the drive.
SV9.2.9-IGBT temperature $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the temperature measured at the power stage of the drive output.
SV9.2.10-Relative Humidity $=0^{\circ} \%$	$\%^{\circ}$	Shows the internal relative humidity of the drive.

Subgroup V9.3: External registers

Note: The parameters associated with analogue inputs 4 to 7 (parameters SV9.3.10 to SV9.3.21) and analogue outputs 3 to 6 (parameters SV9.3.28 to SV9.3.33) will only be displayed if an inputs and outputs expansion board has been connected. Check document SD75MA05 for further information.

Screen	Units	Description
SV9.3.1-Al1 value $=0.00 \mathrm{~V}$	V	Shows the average value of the analogue input 1.
SV9.3.2-Al1 percentage $=100.0$ \%	\%	Shows the speed reference or the PID proportional setting for the analogue input 1.
SV9.3.3-Al1 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	1/s	Shows the value of sensor 1 associated with analogue input 1.
SV9.3.4-Al2 value $=0.00 \mathrm{~mA}$	mA	Shows the average value of the analogue input 2.
SV9.3.5-Al2 percentage $=100.0 \%$	\%	Shows the speed reference or the PID proportional setting for the analogue input 2.
SV9.3.6-Al2 sensor value $=0.0 \mathrm{Bar}$	Bar	Shows the value of sensor 2 associated with analogue input 2 .
SV9.3.7-Al3 value $=0.00 \mathrm{~V}$	See units G4.4.3	Shows the average value of the analogue input 3 .
SV9.3.8-Al3 percentage $=100.0$ \%	\%	Shows the speed reference or the PID proportional setting for the analogue input 3.
SV9.3.9-Al3 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	See units G4.4.2	Shows the value of sensor 3 associated with analogue input 3 .
SV9.3.22-A01 value $=0.00 \mathrm{~V}$	See units G8.2.2	Shows the value of analogue output 1.
SV9.3.23-A01 percentage $=0.0 \%$	\%	Shows the value of the magnitude associated with analogue output 1.
SV9.3.24-AO2 value $=0.00 \mathrm{~V}$	See units G8.3.2	Shows the value of analogue output 2.
SV9.3.25-AO2 percentage $=0.0 \%$	\%	Shows the value of the magnitude associated with analogue output 2.
SV9.3.26-AO3 value $=0.00 \mathrm{~V}$	See units G8.4.2	Shows the value of analogue output 3 .
SV9.3.27-A03 percentage $=0.0 \%$	\%	Shows the value of the magnitude associated with analogue output 3 .
SV9.3.34-DI status $=000000$	-	
SV9.3.34-DI status $\mathbf{= 0 0 0 0 0 0 0 0 0 0 0}$	-	Shows the status of each of the digital inputs of the central control: 6, 10 or 16 bits (input 1: first from the left).
SV9.3.34-DI status $=0000000000000000$	-	
SV9.3.35-DO status $=000$	-	
SV9.3.35-DO status $=00000000$	-	Shows the status of digital outputs: 3,8 or 11 bits (entry 1: first from the left). Note: Only displayed if an expansion board has been connected. If there are two expansion boards connected, 16 bits will be displayed.
SV9.3.35-DO status $=0000000000000$	-	

Subgroup V9.4: Internal registers

Screen	Units	
SV9.4.1-Last fault $=\mathbf{0}$	-	Shows the present fault code.
SV9.4.2-Drive nominal current $=\mathbf{4 6 . 0 ~ A}$	A	Shows the rated current of the drive.
SV9.4.3-Drive nominal voltage $=\mathbf{5 0 0}$ V	V	Shows the rated voltage of the drive.
SV9.4.6-PID setpoint $=100.0 \%$	$\%$	Shows the setpoint value of the PID of the standard equipment program.
SV9.4.7-PID feedback value $=\mathbf{1 0 0 . 0} \%$	$\%$	Shows the PID feedback value of the standard equipment program.
SV9.4.8.1-Comp status $\mathbf{1 = 0}$	-	Shows the status of the three comparators (C1).
SV9.4.8.2-Comp status 2 = 0	-	Shows the status of the three comparators (C2).
SV9.4.8.3-Comp status 3 = 0	-	Shows the status of the three comparators (C3).

Subgroup V9.5: Rectifier registers

This group includes several registers of general information about the rectifier bridge.

Screen	Units	Description
SV9.5.1-Input power $=0.0 \mathrm{~kW}$	kW	Shows the input power.
SV9.5.2-Drive input current $\mathrm{R}=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the rectifier (U).
SV9.5.3-Drive input current S = 0.0 A	A	Shows the instantaneous current per phase of the rectifier (V).
SV9.5.4-Drive input current T $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the rectifier (W).
SV9.5.5-Rect. Cos Phi $=0.00$	-	Shows the input cos phi or Displacement Power Factor (DPF).
SV9.5.6-Rect. IGBT temp. $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the maximum temperature of the IGBTs of the rectifier bridge.
SV9.5.7-Frequency of PLL $=0.0 \mathrm{~Hz}$	Hz	Shows the internal PLL frequency.
SV9.5.8-THD input $=0.00 \%$	\%	Shows the input current distortion (THDi).
SV9.5.9-L1-L2 supply voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (UV).
SV9.5.10-L2-L3 supply voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (VW).
SV9.5.11-L3-L1 supply voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (WU).
SV9.5.12-DC bus voltage= 0 V	V	Shows the DC bus voltage.

Subgroup V9.6: Local motor reg

This subgroup shows information related to the characteristics of the parallel equipment on an overall level.

Note: The parameters associated with the encoder (SV9.6.16 and SV9.6.17) will only be displayed if an optional encoder expansion board has been connected. Check document SD75MA04 for further information.

Screen	Units	Description
SV9.6.1-Speed reference $=\mathbf{0 . 0} \%$	$\%$	Shows the present reference value of speed applied to the motor.
SV9.6.2-Torque reference $=\mathbf{0 . 0} \%$	$\%$	Shows the present reference value of torque applied to the motor.
SV9.6.3-Motor speed $(\%)=0.0 \%$	$\%$	Shows the motor speed in percentage.
SV9.6.4-Motor speed $(\mathrm{rpm})=\mathbf{0 r p m}$	rpm	Shows the motor speed in revolutions per minute.

Screen	Units	Description
SV9.6.5-Motor frequency $=0.0 \mathrm{~Hz}$	Hz	Shows the frequency at which the motor is running.
SV9.6.6-Motor voltage $=0 \mathrm{~V}$	V	Shows the present voltage applied to the motor.
SV9.6.7-Motor current $=0.0 \mathrm{~A}$	A	Shows the present current of the motor.
SV9.6.8-Motor torque $=0.0 \%$	\%	Shows the present torque applied to the motor.
SV9.6.9-Motor phi cosine $=0.85$	-	Shows the motor's power factor.
SV9.6.10-Motor power $=0.0 \mathrm{~kW}$	kW	Shows the instantaneous power consumption of the motor.
SV9.6.11.1-U motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the motor (U).
SV9.6.11.2-V motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the motor (V).
SV9.6.11.3-W motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current per phase of the motor (W).
SV9.6.12.1-U-V motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage ($\mathrm{U}-\mathrm{V}$).
SV9.6.12.2-V-W motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (V-W).
SV9.6.12.3-W-U motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous line voltage (W-U).
SV9.6.13-PTC Status $=$ No	-	Shows whether the motor PTC is connected or disconnected. Visible if [G4.1.10 = PTC].
SV9.6.14-Motor temperature(\%) $=0.0$ \%	\%	Shows the theoretical heating level of the motor.
SV9.6.15-Motor temperature $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the motor temperature measured with the PT100 sensor. Visible if [G4.4.0 = YES].

Group V11: Exp PT100

Note: This group shows information related to PT100 parameters. Refer to the SD75MA08 manual for further information.

Group V12: Warning history

This group shows the last 10 warnings that have been detected by the variable speed drives.

Screen	Units	Description
SV12.1-Last warning $=0$	-	Last register of the warning history.
SV12.2-Date $=01 / 01 / 2000$ 00:00	-	Last date and time of the register of warning history.
SV12.3-Ninth warning $=0$	-	Register number 9 of the warning history.
SV12.4-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 9 of warning history.
SV12.5-Eighth warning $=0$	-	Register number 8 of the warning history.
SV12.6-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 8 of warning history.
SV12.7-Seventh warning $=0$	-	Register number 7 of the warning history.
SV12.8-Date $=01 / 01 / 200000: 00$	-	Date and time of the register number 7 of warning history.
SV12.9-Sixth warning $=0$	-	Register number 6 of the warning history.
SV12.10-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 6 of warning history.
SV12.11-Fifth warning $=0$	-	Register number 5 of the warning history.
SV12.12-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 5 of warning history.
SV12.13-Fourth warning $=0$	-	Register number 4 of the warning history.
SV12.14-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 4 of warning history.

Screen	Units	Description
SV12.15-Third warning $=0$	-	Register number 3 of the warning history.
SV12.16-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 3 of warning history.
SV12.17-Second warning $=0$	-	Register number 2 of the warning history.
SV12.18-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 2 of warning history.
SV12.19-First warning $=0$	-	Register number 1 of the warning history.
SV12.20-Date $=01 / 01 / 2000$ 00:00	-	Date and time of the register number 1 of warning history.
SV12.21-Erase warning history = No	-	Clears the content of the warnings' history.

Group V13: Local Motor vis

This group shows the general local motor's controls only in SD750 drives frames 9 to 11, provided that the following conditions are met:

- G25.1-Role = "Local Master", "Global Master" or "Global Slave"
- There is more than one equipment configured in parallel (G25.7-Paral. Drives Number).
- G1.9-Master/slave config = "Enable".

Check document SD75MA07 for further information.
Note: The parameter associated with the encoder (SV13.17) will only be displayed if an encoder optional expansion board has been connected. Check document SD75MA04 for further information.

Screen	Units	Description
SV13.1-Speed reference $=0.0 \%$	\%	Shows the present reference value of speed which is applied to the local motor.
SV13.2-Torque reference $=0.0 \%$	\%	Shows the present reference value of torque which is applied to the motor.
SV13.3-Motor speed (\%) $=0.0$ \%	\%	Shows the local motor speed in percentage.
SV13.4-Motor speed (rpm) $=0 \mathrm{rpm}$	rpm	Shows the local motor speed in revolutions per minute.
SV13.5-Motor frequency $=0.0 \mathrm{~Hz}$	Hz	Shows the frequency applied to the local motor.
SV13.6-Motor voltage $=0 \mathrm{~V}$	V	Shows the voltage value applied to the local motor.
SV13.7-Motor current $=0.0 \mathrm{~A}$	A	Shows the current flowing to the local motor.
SV13.8-Motor torque $=0.0 \%$	\%	Shows the torque applied to the local motor.
SV13.9-Motor phi cosine $=0.85$	-	Shows the local motor's power factor.
SV13.10-Motor power $=0.0 \mathrm{~kW}$	kW	Shows the instantaneous power consumption of the local motor.
SV13.11.1-U motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current of each phase of the local motor (U).
SV13.11.2-V motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current of each phase of the local motor (V).
SV13.11.3-W motor current $=0.0 \mathrm{~A}$	A	Shows the instantaneous current of each phase of the local motor (W).
SV13.12.1-U-V motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous voltage applied (UV) to the local motor.
SV13.12.2-V-W motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous voltage applied (VW) to the local motor.
SV13.12.3-W-U motor voltage $=0 \mathrm{~V}$	V	Shows the instantaneous voltage applied (UW) to the local motor.
SV13.13-PTC Status $=$ No	-	Shows whether the local motor PTC is connected or disconnected. Visible if [G4.1.10 = PTC].
SV13.14-Estimat. Mot. temp(\%) $=0.0 \%$	\%	Shows the estimated local motor temperature.
SV13.15-Motor temperature $=0^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$	Shows the local motor temperature measured with the PT100 sensor. Visible if [G4.4.0 = YES].

DESCRIPTION OF PROGRAMMING PARAMETERS

This menu contains all the configuration parameters. These parameters are organized in subgroups or sub-menus to facilitate their location.

To access these parameters, enter: Menu - Parameters - Configuration:

F 50 A0	OFF	0.0 A	0.0%
	MENU		
Parameters			
Versions			
Options			
Backups			
Settings			
File download			

Navigation in Settings

Parameters specific to each optional board are not described in this manual, for further information check the corresponding manual (SD75MA--).

Group 1: Options

Note: The parameter associated with the optical fiber board (G1.9) will only be displayed if an optical fiber expansion board has been connected. Check document SD75MA07 for further information.

Screen	Range	Function			Set on run
G1.1-Lock parameters = No	No Partial lock Total lock Display lock	Allows user to lock SD750FR parameters totally or partially. To lock you must introduce a password in G1.1a.			YES
		DESCRIPTION FUNCTION No Parameter lock is not active. Partial lock All parameters are locked except for [G1.1], [G1.1a], [G3.3] and [G6.2] (PID reference). Total lock Only [G1.1] and [G1.1a] can be modified. Display lock Parameters cannot be modified using the display. To perform any changes, user must unlock them or connect through Modbus.			
G1.1a-Lock password = 0	0 to 65535	Allows user to introduce a password to lock parameters and avoid unauthorized changes in the programming. If any lock option has been enabled in G1.1, then this parameter appears automatically. Unlock: In [G1.1 = 1 or 2] set $0 \rightarrow \mathrm{NO}$. The [G1.1a Lock password] screen will appear.			YES
G1.1b-Unlock password recov. $=0$	0 to 65535	It provides information for the recovery of the blocking code introduced with the expression: Unlock password $=(X X X X / 2)-3$.			YES
G1.2-Language $=$ Spanish	Spanish English German Italian	Allows selecting the language of the parameters shown on the Webserver.			NO
			OPC.	DESCRIPCIÓN	
			0	Spanish	
			1	English	
			2	German	
			3	Italian	
		Note: The display language is selected in the "Settings" menu.			
G1.3-Initialize = No init	No init User parameters Motor parameters All parameters	Allows selecting the parameters that we desire to initialize back to the factory default value.			NO
		DESCRIPTION	FUNCTIO		
		No init	None of	arameters is initialized.	
		User parameters	User par	meters are only initialized.	
		Motor parameters	Motor da	are only initialized.	
		All parameters	All param	ters of the drive are initialized.	
G1.4-Short menu = No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	If it is active, then configuration menus will not be accessible. Only visible G1 OPTIONS MENU, G10 LIMITS, and Display groups.			NO
G1.5-Activate programs $=$ Standard	$\begin{gathered} \text { Standard }=0 \\ 1 \text { to } 8 \end{gathered}$	Standard: Normal equipment functionalities. 1 to 8: Additional user functions programmed with PowerPLC, such as the PUMPS MACRO.			NO
G1.6-Service group password = 0	Group reserved for the Technical Service or Power Electronics authorized personnel.				
G1.7-Network synchronization $=0$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows to select whether the inverter enables the synchronization of the output voltage with the input voltage, starting the bypass mode.			NO

Group 2: Motor nameplate data

Screen	Range	Function	Set on run
G2.1-Motor plate current $=1.0 \mathrm{ln} \mathrm{A}$	$0.2 \ln$ to $1.5 \ln \mathrm{~A}$	Allows setting of the motor rated current according to its nameplate Note: In = Rated motor current.	NO
G2.2-Motor plate voltage $=0 \mathrm{~V}$ (*)	0 to 700 V	Allows setting of the motor rated voltage according to its nameplate.	NO
G2.3-Motor plate power $=\operatorname{Pn}\left({ }^{*}\right)$	0.0 to 6500.0 kW	Allows setting of the motor rated power according to its nameplate. This value depends on the rated current of the drive.	NO
G2.4-Motor plate rpm $=1485 \mathrm{rpm}$	0 to 24000 rpm	Allows setting of the motor rated speed according to its nameplate.	NO
G2.5-Motor plate phi cosine $=0.85$	0.01 to 0.99	Allows setting of motor cosine Phi according its nameplate.	NO
G2.6-Motor plate frequency $=50 \mathrm{~Hz}$	0 to 599 Hz	Allows setting of the motor rated frequency according to its nameplate. Note: For operating frequencies above 100 Hz consult Power Electronics.	NO
G2.7-Motor cooling = 63.00\%	50 to 100%, $\text { Off }=101$	It provides adjustment of sensitive of the motor thermal model based on actual motor cooling. The following settings can be taken as reference: Submersible pumps and non-deflagrating motor $\rightarrow 5 \%$ Self-cool motor $\rightarrow 63 \%$ Forced-cool motor \rightarrow 100\% Note: If the drive is working at low speeds for a long time and several trips caused by motor thermal model are produced even though the motor was not hot then this value can be increased slightly to avoid further tripping. Note: If it is set to 'OFF', thermal model will be deactivated. Note: This protection estimates the temperature in the motor. To guarantee the motor protection, it is recommended to use the motor sensor (PTC).	YES

[^0]

Group 3: References

Screen	Range			Function	Set on run
G3.1-Speed ref 1 source $=$ Local	0 to 17	Allows selecting the source 1 or 2 for the speed reference.			YES
		OPT.	DESCRIPTION	FUNCTION	
		0	None	Reference source 1 has not been selected.	
		1	Analog Input 1	Reference will be introduced through the Analogue Input 1.	
		2	Analog Input 2	Reference will be introduced through the Analogue Input 2.	
		3	Analog Input 1+2	Reference will be the sum of the signals introduced through the Analogue Inputs 1 and 2.	
		5	Local	Reference will be given by keypad and will be set in [G3.3 Local Speed Reference].	
		6	Multireferences	Multi-Reference. Different references activated by the digital inputs. It will be necessary to configure the digital inputs. See [G4.1 \rightarrow Digital Inputs].	
		7	Motorized potentiometer	Motorized potentiometer with or without reference memory.	
G3.2-Speed ref 2 source $=$ Local		8	PID	It will take as reference the value set in the parameters of the PID function.	YES
		9	Analog Input 3	Reference will be introduced through the Analogue Input 3.	
		10	Comunicaciones	The reference will be introduced through the communications.	
		11	Fiber	Reserved.	
		12	PowerPLC	Reference will be introduced through PowerPLC.	
		13	Analog Input 4	Reference will be introduced through the Analogue Input 4.	
		14	Analog Input 5	Reference will be introduced through the Analogue Input 5.	
		15	Analog Input. 6	Reference will be introduced through the Analogue Input 6.	
		16	Analog Input 7	Reference will be introduced through the Analogue Input 7.	
		17	EthernetIP	Reference will be introduced through the Ethernet/IP network.	
		Notes: - Options 13 to 16 will only be visible if an IO expansion board has been connected. - Option 17 will only be available if the Ethernet/IP board has been connected.			
G3.3-Speed local reference $=100.0 \%$	-250 to 250\%	Allows the user to set the motor speed value if the reference source for speed has been set to 'LOCAL'.			YES
G3.4-Torque ref 1 source $=$ Local	0 to 17	Allows selecting the source of the torque control reference (G3.4) and the reference source of the alternative torque control (G3.5).			YES
		OPT.	DESCRIPTION	FUNCTION	
		0	None	Reference source 1 has not been selected.	
		1	Analog Input 1	Reference will be introduced through the Analogue Input 1.	
		2	Analog Input 2	Reference will be introduced through the Analogue Input 2.	
		3	$\begin{aligned} & \text { Analog Input } \\ & 1+2 \end{aligned}$	Reference will be the sum of the signals introduced through the Analogue Inputs 1 and 2.	
		5	Local	Reference will be given by keypad and will be set in ' G 3.3 'Local Speed Reference'.	
		6	Multireferences	Multi-Reference. Different references activated by the digital inputs. It will be necessary to configure the digital inputs. See 'G4.1 \rightarrow Digital Inputs'.	
G3.5-Torque ref 2 source $=$ Local		7	Motorized potentiometer	Motorized potentiometer with or without reference memory.	YES
		8	PID	It will take as reference the value set in the parameters of the PID function.	
		9	Analog Input 3	Reference will be introduced through the Analogue Input 3.	
		10	Comunicaciones	The reference will be introduced through the communications.	
		11	Fiber	Reserved.	
		12	PowerPLC	Reference will be introduced through PowerPLC.	
		13	Analog Input 4	Reference will be introduced through the Analogue Input 4.	
		14	Analog Input 5	Reference will be introduced through the Analogue Input 5.	
		15	Analog Input 6	Reference will be introduced through the Analogue Input 6.	
		16	Analog Input 7	Reference will be introduced through the Analogue Input 7.	
		17	EthernetlP	Reference will be introduced through the Ethernet IP network.	
		Notes: - Options 13 to 16 will only be visible if an IO expansion board has been connected. - Option 17 will only be available the corresponding board has been connected and the Ethernet/IP protocol enabled.			
G3.6-Torque local reference = 100.0 \%	-250 to 250\%	Adjust the local torque reference.			YES

Group 4: Inputs

This group of programming parameters is divided into different subgroups

Subgroup 4.1: Digital inputs

Screen	Range	Function			Set on run
G4.1.19-Digital Input $15=$ Not used	0 to 48	Note: Comes from the previous page.			NO
		OPT	FUNCTION	DESCRIPTION	
		29	PTC	To generate the fault 'F79 PT100'. Only valid for Digital Input 6.	
		32	Speed / Torque	Allows changing the control mode by Speed (input $=0$) or by Torque (input = 1).	
		33	Output 1 Feedback 1	If the status of the input is different during the time set in G4.1.27 to the state of the corresponding output, fault "F55: contactor feedback".	
		34	Output 2 Feedback 2		
G4.1.20-Digital Input $16=$ Not used		35	Output 3 Feedback 3		NO
		36	Output 4 Feedback 4		
		37	Output 5 Feedback 5		
		38	Output 6 Feedback 6		
		39	Output 7 Feedback 7		
		40	Output 8 Feedback 8		
		41	Universal Stop	It stops the drive regardless of control mode \& program selection configured (NO).	
		43	Output 9 Feedback 9	If the status of the input is different during the time set in G4.1.27 to the state of the corresponding output, fault "F55: contactor feedback".	
		44	Output 10 Feedback 10		
		45	Output 11 Feedback 11		
		46	Output 12 Feedback 12		
		47	Output 13 Feedback 13		
		48	Torque limit 2	Allows selecting the second torque limit reference as programmed in G10.2.8.	
G4.1.27-Feedback Err. Timeout $=1.0 \mathrm{~s}$	0.5 to 60.0 s	If a digital input is configured as "Output X Feedback X" (Output Feedback 1 to 8) sets the time that the value of the selected output and input must remain different so that the" F55: contactor feedback "appears.			YES
G4.1.28-Invert Input mode= (*)	DI1 to DI16	Select which of the inputs works in inverted mode. The default value and range of this parameter depends on the number of available digital inputs (6,11 or 16 bits will appear). Each of the six, eleven or sixteen digital inputs (ED1 to ED16) is selected individually using this parameter.			YES

Subgroup 4.2: Analogue input 1

Screen	Range	Function	Set on run
G4.2.3-Al1 Format $=$ V	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$	Allows configuring the analogue input 1 format for either a voltage or current signal, by modifying the input impedance of the analogue input. Set according to the sensor that will be used.	NO
G4.2.4-Al1 low level = $0.0 \mathrm{~V}$	$\begin{aligned} & -10.0 \mathrm{~V} \text { to } \mathrm{G} 4.2 .6 \\ & +0.0 \mathrm{~mA} \text { to } \mathrm{G} 4.2 .6 \end{aligned}$	The analogue input reading is calibrated with the magnitude selected in 'G4.2.2', allowing to determine the minimum voltage or current value for analogue input 1 . Set according to the characteristics of the sensor that will be connected.	YES
G4.2.5-Sensor low level $=0.0 \mathrm{l} / \mathrm{s}$	-3200 to G4.2.7 Engineering units	The analogue input reading is calibrated with the magnitude selected in 'G4.2.2', allowing to set the minimum units value of the sensor connected to analogue input 1 . This value should also correspond to the minimum voltage or current level of the sensor set in 'G4.2.4 INmin1'. Note: This value should be checked if the units are changed in 'G4.2.2 SENSOR 1'. It will be set to operate in open loop and close loop.	YES
G4.2.6-Al1 high level $=10.0 \mathrm{~V}$	$\begin{gathered} \mathrm{G} 4.2 .4 \text { to }+10 \mathrm{~V} \\ \mathrm{G} 4.2 .4 \text { to }+20 \mathrm{~mA} \end{gathered}$	The analogue input reading is calibrated with the magnitude selected in 'G4.2.2', allowing to determine the maximum voltage or current value for analogue input 1 . Set according to the characteristics of the sensor that will be connected.	YES
G4.2.7-Sensor high $\text { level }=10.0 \mathrm{l} / \mathrm{s}$	G4.2.5 to +3200 Engineering units	The analogue input reading is calibrated with the magnitude selected in ' G 4.2 .2 ', allowing to set the maximum units value of the sensor connected to analogue input 1 . This value should also correspond to the maximum voltage or current level of the sensor set in 'G4.2.6 INmax1'. Available if [G4.2.1 = YES]. Note: This value should be checked if the units are changed in 'G4.2.2 SENSOR 1'. For this, it is necessary to set this value in open loop and close loop configurations.	YES
G4.2.8-Al1 Ref speed $\min =0.0 \%$	-250.0 to G4.2.9	Allows scaling of the speed reference to correspond with the minimum range of the analogue input 1 as set in 'G4.2.4 INmin1'. The value is a percentage of the motor rated speed.	YES
G4.2.9-Al1 Ref speed $\max =100.0 \%$	G4.2.8 to 250.0\%	Allows scaling of the speed reference to correspond with the maximum range of the analogue input 1 as set in 'G4.2.6 INmax1'. The value is a percentage of the motor rated speed.	YES
G4.2.10-Sensor min value $=0.0 \mathrm{l} / \mathrm{s}$	-3200 to G4.2.12 Engineering units	Sets the minimum operating range, if the real operating range is different than the range of the sensor which will be used as sensor in open loop. It corresponds with the voltage or current level set in 'G4.2.4INmin1'. This parameter should be configured to operate with sensor in open loop. Available if [G4.2.1 = YES].	YES
G4.2.11-Open loop \min speed $=0.0 \%$	-250\% to 250\%	Allows setting the minimum speed range corresponding to the minimum sensor range set in 'G4.2.10 FB1', when the sensor will be used in open loop. The value is a percentage of the motor rated speed. Available if [G4.2.1 $=\mathrm{YES}$].	YES
G4.2.12-Sensor max value $=10.0 \mathrm{l} / \mathrm{s}$	G4.2.10 to +3200 Engineering units	Sets the maximum operating range, if the real operating range is different than the range of the sensor which will be used as sensor in open loop. It corresponds with the voltage or current level set in 'G4.2.6INmin1'. This parameter should be configured to operate with sensor in open loop. Available if [G4.2.1 = YES].	YES
G4.2.13-Open loop \max speed $=100.0$ \%	-250\% to 250\%	Allows setting the maximum speed range corresponding to the maximum sensor range set in 'G4.2.12 FA1', when the sensor will be used in open loop. The value is a percentage of the motor rated speed. Available if [G4.2.1 $=$ YES].	YES
G4.2.14-Al1 loss protection $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Sets the drive stop mode when a loss of the analogue input 1 signal occurs.	YES
		OPTION FUNCTION	
		No Function disabled.	
		Yes When the analogue input level decreases down to zero value, sensor will be considered damaged and the drive will stop generating a fault 'F42 AIN1 LOSS'.	
G4.2.15-Al1 zero band filter = Off	$\begin{gathered} \text { Off = } 0.0 \\ 0.1 \text { to } 2.0 \% \end{gathered}$	Filtering of analogue input 1 signal. Setting this value, we can filter analogue input 1 to avoid possible electrical noise preventing the analogue reading a zero value.	YES
G4.2.16-Al1 stabilizer filter $=$ Off	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \text { s } \end{gathered}$	Allows filtering the Analogue Input 1 signal. Setting the value of this time constant we can eliminate possible instabilities in the value of the same ones due to noise, wiring faults, etc. Note: When applying a Low Pass filter to any analogue signal, a delay time in the own signal is generated. This delay time is the value of the configured time constant approximately.	YES

Subgroup 4.3: Analogue input 2 / pulse

Screen	Range	Function	Set on run
G4.3.0-Enable Pulse In. Mode = No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows the user to enable analogue input 2 as a pulse input.	NO
G4.3.1-Enable sensor $=\text { No }$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows user to configure analogue input 2 for use with a sensor and activates the parameters which are necessary to set it up. See [G4.3.2] up to [G4.3.7]. Available if [G4.3.0 = NO].	NO
G4.3.2-Sensor unit = Bar	m l / s $\mathrm{m}^{3} / \mathrm{s}$ l / m $\mathrm{m}^{3} / \mathrm{m}$ I / h $\mathrm{m} 3 / \mathrm{h}$ m / s m / m m / h Bar kPa psi m ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{F}$ K Hz Hz rpm	Allows selecting different units of measurement for the analogue input 2 according to the sensor that is used. If this parameter is modified, the minimum and maximum values of the sensor range must be adjusted to ensure correct configuration. Therefore, the following set values should be checked: 'G4.3.5 Smi2 $=+0.0 \mathrm{bar}$ ' \rightarrow Minimum range of sensor. 'G4.3.7 Sma2=+10.0bar' \rightarrow Maximum range of sensor. Available if [G4.3.1 = YES].	NO
G4.3.2-Sensor unit Pulse In. = l/s	\% $\mathrm{m}^{3} / \mathrm{s}$ l / m $\mathrm{m}^{3} / \mathrm{m}$ l/h $\mathrm{m}^{3} / \mathrm{h}$ m / s m / m m / h	Allows selecting the units of the input when it is configured as "pulse input". Available if [G4.3.0 $=$ YES]	YES
G4.3.2b-Pulses per unit $=100$	1 to G4.3.2c	Allows adjusting the number of pulses per unit of measurement of the sensor (G4.3.2). For example, 100 pulses $=1 \mathrm{l} / \mathrm{s}$. Available if [G4.3.0 $=\mathrm{YES}]$.	YES
$\begin{aligned} & \text { G4.3.2c-Max pulses = } \\ & 1000 \end{aligned}$	1 to 32000	Allows adjusting the maximum number of pulses of the sensor. Available if [G4.3.0 = YES].	YES
G4.3.3-Al2 Format $=$ mA	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$	Allows configuring the format of the analogue input 2 to connect a voltage or current signal based on the sensor or signal that is going to be used for entering the setpoint. Available if [G4.3.0 = NO].	YES
$\begin{aligned} & \text { G4.3.4-Al2 low level = } \\ & 4.0 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & -10.0 \mathrm{~V} \text { to } \mathrm{G} 4.3 .6 \\ & +0.0 \mathrm{~mA} \text { to G4.3.6 } \end{aligned}$	Defines the minimum voltage or current value for analogue input 2 according to the characteristics of the sensor connected. Available if [G4.3.0 = NO].	NO
G4.3.5-Sensor low level = 0.0 Bar	-3200.0 to G4.3.7 Engineering units	Sets the minimum value of units of the sensor connected to analogue input 2 , corresponding to the minimum voltage or current level of the sensor set in [G4.3.4 Enmin2]. Note: This value must be checked if the units are changed in [G4.3.2 SENSOR 2]. It will be adjusted for working in open and closed loop. Available if [G4.3.1 = YES].	YES

Subgroup 4.4: Analogue input 3 / PT100

Screen	Range		Function	Set on run
G4.4.0-PT100 Mode = No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Configures the Al3 to work with a PT100 sensor. When enabled, all other parameters within this group will become disabled. Note: In case of activating the PT100 mode, besides configuring the analogue input 3 in mode PT100 $(\mathrm{G4.4.0}=\mathrm{Yes})$, one of the analogue outputs must be configured in mode $10 \mathrm{~mA}(\mathrm{G8} .2 .2$ or G8.3.2 $=10 \mathrm{~mA}$). See hardware configuration in the Hardware and Installation Manual.		NO
G4.4.1-Enable sensor$=\text { No }$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows the user to enable the use of analogue input 3 and enables the necessary screens to configure it. See [G4.4.2] to [G4.4.7].		NO
		OPTION	FUNCTION	
		No	The sensor connected to this input can be used to introduce the speed reference and as open loop sensor.	
			Analogue input enabled as feedback in closed loop control.	
		Available if [G4.4.0 $=$ NO].		
G4.4.2-Sensor unit = I/s	$\%$ l / s $\mathrm{m} 3 / \mathrm{s}$ l / m $\mathrm{m}^{3} / \mathrm{m}$ I / h m / h m / s m / m m / h Bar kPa Psi m ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{F}$ K Hz Hzm	Allows choos sensor to be Changing this be affected in: [G4.4.5 Sens [G4.4.7 Sens Available if	different measure units for the analogue input 3 depending on the function of the ed. parameter implies that the minimum and maximum values of the sensor range will the corresponding conversion. Thus, it is necessary to verify the values adjusted low level $=+0.01 / \mathrm{s}] \rightarrow$ Sensor minimum level. high level $=+10.01 / \mathrm{s}] \rightarrow$ Sensor maximum level. 4.4.1 $=\mathrm{YES}]$.	NO
G4.4.3-Al3 Format $=$ V	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$	Allows con depending	ing the format of the analogue input 3 to connect a voltage or current signal, he sensor to be used to introduce the reference. Available if [G4.4.0 = NO].	NO
$\begin{aligned} & \text { G4.4.4-Al3 low level = } \\ & \text { 0.0 V } \end{aligned}$	$\begin{aligned} & -10.0 \mathrm{~V} \text { to } \mathrm{G} 4.4 .6 \\ & +0.0 \mathrm{~mA} \text { to } \mathrm{G} 4.4 .6 \end{aligned}$	Defines the characteristic	inimum value of voltage or current for analogue input 3 according to the of the sensor that is going to be connected. Available if [G4.4.0 = NO].	YES
G4.4.5-Sensor low level $=0.0 \mathrm{l} / \mathrm{s}$	-3200 to G4.4.7 Engineering units	Adjusts the corresponds Available if Note: This operation in	mimum unit value of the sensor connected to the analogue input 3 , which with the minimum level of voltage or current of the sensor configured in [G4.4.4]. 4.4.1 = YES]. e must be revised if the units are changed in [G4.4.2]. It must be adjusted for n and closed loop.	YES
G4.4.6-Al3 high level $=10.0 \mathrm{~V}$	$\begin{aligned} & \mathrm{G} 4.4 .4 \text { to }+20.0 \mathrm{~V} \\ & \mathrm{G} 4.4 .4 \text { to }+20 \mathrm{~mA} \end{aligned}$	Defines the characteristic	aximum value of voltage or current for analogue input 3 according to the of the sensor that is going to be connected. Available if [G4.4.0 = NO].	YES
G4.4.7-Sensor high level $=10.0 \mathrm{l} / \mathrm{s}$	G4.4.5 to +3200 Engineering units	Adjusts the corresponds Available if Note: This operation in	aximum unit value of the sensor connected to the analogue input 3 , which th the maximum level of voltage or current of the sensor configured in [G4.4.6]. 4.4.1 = YES]. e must be revised if the units are changed in [G4.4.2]. It must be adjusted for n and closed loop.	YES
G4.4.8-Al3 Ref speed $\min =0.0 \%$	-250\% to G4.4.9	Allows adju corresponds configured to 'G4.4.1 Enab $[\mathrm{G} 4.4 .0=\mathrm{NO}$	g the speed reference for the minimum range of analogue input 3 , which th the minimum level of voltage or current of the sensor configured in [G4.4.4]. It is troduce the speed reference through the analogue input. Adjust parameter sensor $=\mathrm{N}^{\prime}$. The value is a percentage of motor nominal speed. Available if	YES
G4.4.9-Al3 Ref speed $\max =100.0 \%$	G4.4.8 to 250\%	Allows adjus corresponds is configured 'G4.4.1 Enab [G4.4.0 = NO	g the speed reference for the maximum range of analogue input 3 , which th the maximum level of voltage or current of the sensor configured in [G4.4.6]. It introduce the speed reference through the analogue input. Adjust parameter sensor $=\mathrm{N}^{\prime}$. The value is a percentage of motor nominal speed. Available if	YES
G4.4.10-Sensor min value $=0.0 \mathrm{l} / \mathrm{s}$	-3200 to G4.4.12	Adjust the m the sensor th or current se [G4.4.1 = YES	mum working range, if the real working range is different than the one covered by is going to be used as sensor in open loop. Corresponds with the level of voltage G4.4.4. It must be configured to work with the sensor in open loop. Available if	YES
G4.4.11-Open loop \min speed $=0.0 \%$	-250% to 250%	Allows adjus in G4.4.10, The value is	the minimum speed range which corresponds to the minimum sensor range set n the sensor is going to be used in open loop. percentage of motor nominal speed. Available if [G4.4.1 = YES].	YES

Screen	Range	Function	Set on run
G4.4.12-Sensor max value $=10.0 \mathrm{l} / \mathrm{s}$	-3200 to +3200 Engineering units	Adjust the maximum working range, if the real working range is different than the one covered by the sensor that is going to be used as sensor in open loop. Corresponds with the level of voltage or current set in G4.4.6. It must be configured to work with the sensor in open loop. Available if [G4.4.1 = YES].	YES
G4.4.13-Open loop \max speed $=100.0$ \%	-250\% to 250\%	Allows adjusting the minimum speed range which corresponds to the minimum sensor range set in G4.4.12, when the sensor is going to be used in open loop. The value is a percentage of motor nominal speed. Available if [G4.4.1 = YES].	YES
G4.4.14-Al3 loss protection $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Adjusts stop mode of the drive in case the signal from analogue input 3 is lost.	YES
		OPTION ${ }^{\text {FUNCTION }}$	
		No Function is disabled.	
		Yes Whenever a sudden drop on the analogue input level is detected, terminating in zero, it indicates the sensor is damaged.	
		Available if [G4.4.0 = NO].	
G4.4.15-Al3 zero band filter = Off	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 2.0 \% \end{gathered}$	Analogue input 3 signal filtering. By adjusting this value, the analogue signal is filtered to eliminate possible electrical noise that prevents reading a zero value when it should. Available if [G4.4.0 = NO].	YES
G4.4.16-Al3 stabilizer filter $=$ Off	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \mathrm{~s} \end{gathered}$	Allows adjusting a filtering to the analogue input 3 signal. By adjusting the value of this time constant, it is possible to eliminate possible instabilities in the signal caused by noise, wiring faults, etc. Available if [$\mathrm{G} 4.4 .0=\mathrm{NO}$]. Note: The application of a low pass filter to any analogue signal produces a delay of approximately the value of the configured time constant.	YES
G4.4.17-PT100 stabilizer filt $=10.0 \mathrm{~s}$	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \mathrm{~s} \end{gathered}$	Allows adjusting a filtering to the value received from the PT100. By adjusting the value of this time constant, it is possible to eliminate possible instabilities in the signal caused by noise, wiring faults, etc. Available if [G4.4.0 = YES]. Note: The application of a low pass filter to any analogue signal produces a delay of approximately the value of the configured time constant.	YES

Subgroup 4.5: Analogue input 4

Note: This group will be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Subgroup 4.6: Analogue input 5

Note: This group will be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Subgroup 4.7: Analogue input 6

Note: This group will be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Subgroup 4.8: Analogue input 7

Note: This group will be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Group 5: Acc / Dec rates

Subgroup 5.1: Acceleration

Screen	Range	Function	Set on run
G5.1.1-Acceleration rate $1=1.50 \% / s$	0.01 to 650.00\% / s	Allows setting acceleration ramp 1, in acceleration units (increase in percentage of speed per second). For example, a $10 \% / \mathrm{s}$ ramp means that the drive will increase its speed by 10% of motor rated speed per second. This ramp must be set according to the requirements of each process.	YES
G5.1.2-Acceleration rate $2=2.00 \% / \mathrm{s}$	0.01 to 650.00\% / s	Allows the user to set the alternative acceleration ramp. Adjustment is made in acceleration units (increase in percentage of speed per second), same as for the main ramp. The drive will apply acceleration ramp 1 until motor exceeds [G5.1.3] or by digital input or by using the Acc / Dec comparator output functions and, from here on, it will apply the alternative ramp. If [G5.1.3 = OFF], no ramp change will occur.	YES
G5.1.3-Accel break speed $=$ Off	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250 \% \end{gathered}$	This parameter offers the possibility of using the alternative acceleration ramp. Here, user can set the speed value above which the drive will start applying the alternative acceleration ramp. Note: Alternative acceleration and deceleration can be selected through the digital inputs or by using the comparator output functions (for example, if the magnitude of the comparator is the drive rated current, when the drive output current exceeds a defined level, calculated as percentage of In, a ramp change occurs).	YES
G5.1.4-Ramp after V.Deep $=1.50 \% / \mathrm{s}$	0.05 to $650.00 \% / \mathrm{s}$	Acceleration ramp used to reach speed reference after the occurrence of a voltage drop or cut that has caused it to decrease.	YES

Subgroup 5.2: Deceleration

Screen	Range	Function	Set on run
G5.2.1-Deceleration rate $1=1.50 \% / s$	0.01 to 650.00\% / s	Allows setting deceleration ramp 1, in deceleration units (decrease in percentage of speed per second). For example, a $10 \% / \mathrm{s}$ ramp means that the drive will decrease its speed by 10% of motor rated speed per second. This ramp must be set according to the requirements of each process.	YES
G5.2.2-Deceleration rate 2 = $2.00 \% / \mathrm{s}$	0.01 to 650.00\% / s	Allows the user to set the alternative deceleration ramp. Adjustment is made in deceleration units (decrease in percentage of speed per second), same as for the main ramp. The drive will apply deceleration ramp 2 until motor exceeds [G5.2.3] and, from here on, it will apply the alternative ramp. If [G5.2.3 = OFF], no ramp change will occur.	YES
G5.2.3-Decel break speed $=0$ ff	$\begin{gathered} \text { Off = } 0 \\ 1 \text { to } 250 \% \end{gathered}$	This parameter offers the possibility of using the alternative deceleration ramp. Here, user can set the speed value above which the drive will start applying the alternative deceleration ramp. Note: Alternative acceleration and deceleration can be selected through the digital inputs or by using the comparator output functions independently of the drive speed.	YES

Subgroup 5.3: Motorized potentiometer

Note: This group will be shown if the speed reference has been set to Motorized Potentiometer in Group 3: References.

Screen	Range	Function	Set on run
G5.3.1-Mot pot accel rate 1 = $1.00 \% / s$	0.01 to 650% / s	Allows adjusting ramp 1 reference increase when using the motorized potentiometer function.	YES
G5.3.2-Mot pot decel rate $1=3.00 \% / s$	0.01 to 650\% / s	Allows adjusting ramp 1 reference decrease when using the motorized potentiometer function.	YES
G5.3.3-Mot pot accel rate $2=1.00 \% / s$	0.01 to 650\% / s	Allows setting the ramp 2 reference increase for the motorized potentiometer function. The drive will apply the ramp 1 rate until the value set in [G5.3.4] is exceeded. From here on it will apply the alternative ramp value. If [G5.3.4 = OFF], no ramp change will occur.	YES
G5.3.4-Mot pot decel rate 2 = $3.00 \% / \mathrm{s}$	0.01 to 650\% / s	Allows setting the ramp 2 reference decrease for the motorized potentiometer function. The drive will apply the ramp 1 rate until below the value set in [G5.3.4]. From here on it will apply the alternative ramp value. If [G5.3.4 = OFF] no ramp change will occur.	YES
G5.3.5-Mot pot rate brk speed = 0 \%	0 to 250\%	This parameter sets the break frequency for the alternative acceleration and deceleration reference ramp when using motorized potentiometer. This parameter is the speed below which the drive will start applying the alternative ramp value.	YES

Others

| Screen | Range | Function | Set on
 run |
| :--- | :---: | :--- | :--- | :---: |
| G5.4-Speed filter $=$
 Off | Off $=0.0$
 0.1 to 80.0% | Percentage of the acceleration ramp in which the S filter is applied. It softens acceleration and
 deceleration. Provides a filter of the S curve for speed reference changes, including Start / Stop
 commands, by softening acceleration and deceleration.
 Particularly useful in cranes and elevators. | YES |

Group 6: PID Control

Screen	Range			Function	Set on run
G6.1-Setpoint source = Multireferences	0 to 13	Allows user to select the reference source for the setpoint of the PID regulator.			NO
		OPT.	DESCRIPTION	FUNCTION	
		0	None	Source disabled.	
		1	Analog Input 1	PID setpoint introduced by Analogue Input 1.	
		2	Analog Input 2	PID setpoint introduced by Analogue Input 2.	
		3	Analog Input 1+2	Reference will be the sum of signals introduced by Analogue Inputs 1 and 2.	
		4	Multireferences	PID setpoint introduced by Digital Inputs configured as Multireferences.	
		5	Local	PID setpoint introduced by keypad. Value can be adjusted in screen [G3.3].	
		6	Local PID	PID setpoint introduced by keypad. Value is set in [G6.2]. Allows user having two speed references because [G3.3] is not modified.	
		7	Analog Input 3	PID setpoint introduced by Analogue Input 3.	
		8	Communication s	PID setpoint introduced by communications.	
		9	Analog Input 4	PID setpoint introduced trough Analogue Input 4.	
		10	Analog Input 5	PID setpoint introduced trough Analogue Input 5.	
		11	Analog Input 6	PID setpoint introduced trough Analogue Input 6.	
		12	Analog Input 7	PID setpoint introduced trough Analogue Input 7.	
		13	Ethernet IP	PID setpoint introduced trough Ethernet IP communications	
		Notes: - Options 9 to 12 will only be visible if an I/O expansion board has been connected. - Option 13 will only be available if an Ethernet IP board has been connected.			
G6.2-Local process setpoint $=100.0$ \%	+0.0 to +300.0\%	When the PDI source is set as "Local PID"], the setpoint used by the PID will be [G6.2]. The value of parameter [G3.3] is not used and will be available for use as speed reference.			YES
G6.3-Feedback source = Analog Input 2	0 to 15	Selects the reference source for the feedback signal to close the control loop.			NO
		OPT.	DESCRIPTION	FUNCTION	
		0	None	The PID function is not active.	
		1	Analog Input 1	Feedback signal through the Analogue Input 1.	
		2	Analog Input 2	Feedback signal through the Analogue Input 2.	
		3	$\begin{aligned} & \text { Analog Input } \\ & 1+2 \end{aligned}$	Feedback will be the addition of the signals introduced through the Analogue Inputs 1 and 2.	
		4	Analog Input 3	Feedback signal through the Analogue Input 3.	
		5	Communication s	Feedback signal through communications.	
		6	Motor torque	Motor torque.	
		7	Absolute torque	Absolute motor torque.	
		8	Motor current	Motor output current.	
		9	Motor power	Motor output power.	
		10	Bus voltage	Bus voltage.	
		11	Motor cos phi	Phi Cosine.	
		12	Analog Input 4	Feedback signal through the Analogue Input 4.	
		13	Analog Input 5	Feedback signal through the Analogue Input 5.	
		14	Analog Input 6	Feedback signal through the Analogue Input 6.	
		15	Analog Input 7	Feedback signal through the Analogue Input 7.	
		Note: Options 12 to 15 will only be visible if an I/O expansion board has been connected.			
$\begin{aligned} & \text { G6.4-Process Kc = } \\ & 8.0 \end{aligned}$	0.1 to 20.0	Allows setting the proportional gain value of the PID regulator. If you need a higher control response, increase this value. Note: If this value is increased too much, a higher instability in the system can be introduced.			YES
G6.5-Process $\mathrm{Ti}=0.1$ s	$\begin{aligned} & 0.1 \text { to } 1000 \text { s } \\ & \text { Infinite }=1000.1 \end{aligned}$	Allows setting the integration time of the PID regulator. If you need a higher accuracy you should increase this value. Note: If this value is increased too much, the system can become slower.			YES

| Screen | Range | Function | Set on
 run |
| :--- | :---: | :--- | :--- | :--- | :--- |
| G6.6-Process Td $=$
 0.0 s | 0.0 to 250.0 s | Allows setting the derivate time of the PID regulator. If you need a higher response, you can
 increase this value.
 Note: If this value is increased too much, accuracy can decrease. | YES |
| | | Allows inverting the drive PID output. | |

Note: PID functions will be set here if this function is enabled in parameters 'G3.1 Speed ref 1 source=Local' or 'G3.2 Speed ref 2 source =Local.

Group 7: Start / stop control

Subgroup 7.1: Start

Screen	Range		Function	Set on run
G7.1.7-Start after V.Deep $=$ Spin	Ramp Spin	Select the start mode after a voltage drop. This value must be set appropriately for each application.		YES
		OPT.	FUNCTION	
		Ramp	Drive will stop applying a frequency ramp.	
		Spin	Current motor speed will be searched for automatically and, from that point, motor will be accelerated until reaching the reference speed.	
G7.1.8-Run after reset $=$ Yes	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows starting the drive after resetting the fault produced in the equipment, as long as the start command is activated.		YES
		OPT.	FUNCTION	
		No	After resetting the fault, the drive will not start even if the start command is activated. To start, user should deactivate the start command and activate it again. This operation mode guarantees that, even if the fault is reset, start will be controlled by an operator. This option is commonly used in remote controls to increase the safety at the starting.	
		Yes	The drive will start after resetting the fault, as long as the start command is activated.	
G7.1.9-Delay after reset $=0.001 \mathrm{~s}$	0.001 to 9.999 s	Operates with starting after command is	G7.1.8. Sets the minimum time during which the start order must be disabled before the reset. This is a very useful parameter for communications, since the start ceived in the time that takes the frame to arrive.	YES
G7.1.10Magnetization time = Off	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 10.0 \text { s } \end{gathered}$	Sets the perio	during which the motor is being magnetized before starting.	YES

Subgroup 7.2: Stop

| Screen | Range | | Function | Set on
 run |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Subgroup 7.3: Spin start

Screen	Range	Function	Set on run
G7.3.1-Tune = 10 \%	0 to 100\%	Allows setting the accuracy of the speed search function when the drive starts in SPIN mode. Usually, the optimum value is between 2 and 5%. As the value is lower, more accuracy is required.	YES
G7.3.2-Minimum speed $=0.0 \%$	0.0 to 25.0 \%	Allows to set the minimum speed that the drive can reach during the speed search in spin start. The drive starts the speed search in the nominal speed and performs the search by lowering the speed to the minimum speed set in this parameter.	YES
G7.3.3-Magnetization tim $=1.0 \mathrm{~s}$	0.1 to 25.0 s	Allows defining how long to wait, in seconds, to stablish the flow of the motor once the speed search for spin start has finished.	YES

Group 8: Outputs

Subgroup 8.1: Digital outputs

Note: Parameters G8.1.13 to G8.1.52 will only be available if the corresponding expansion boards have been connected.

Screen	Range			Function	Set on run
G8.1.0.1-Group 1	0 to 255	User can configure three faults per group (this is, nine faults in total). If a fault occurs and matches any of the faults configured in these groups, the output relay will be enabled. To enable the relay, the corresponding output source (G8.1.x) must have been enabled as "User fault group 1" (52), "User fault group 2" (53) or "User fault group 3" (54).			YES
G8.1.0.2-Group 2					YES
G8.1.0.3-Group 3					YES
G8.1.1-Relay 1 source select = Run	00 to 58	Configures the operation of each output relay according to the options from the following table:			NO
		OPT	FUNCTION	DESCRIPTION	
		00	Always OFF	Output is not active.	
		01	Always ON	When the drive is powered, the output relay is activated.	
		02	No faults	Relay will remain active if there are no faults in the drive. If a fault occurs, the relay will be deactivated.	
		03	General fault	Drive fault or low input voltage will activate the relay.	
		04	Start	Relay is active once the drive has received the start command.	
		05	Run	Drive is running, and relay will be activated.	
		06	Ready	Drive is ready to start (there are no faults or warnings).	
		07	Zero speed	Drive is running at zero speed.	
		08	Set speed	Speed has reached the value set as reference.	
		09	Speed direction	The relay is activated when the speed direction is negative.	
		11	Speed ref direction	The relay is activated when the speed reference direction is negative.	
		13	Speed limit	Speed limit has been reached.	
		14	Current limit	Motor current limit has been reached.	
		15	Voltage limit	DC Bus voltage limit has been reached.	
		16	Torque limit	Torque limit has been reached.	
		17	Comparator 1	When the comparator 1 output is active, relay will be activated.	
		18	Comparator 2	When the comparator 2 is output active, relay will be activated.	
		19	Comparator 3	When the comparator 3 output is active, relay will be activated.	
		20	Acc / Dec 2	Relay is activated if the alternative ramps are used.	
		21	Reference 2	Relay is activated if reference 2 has been selected.	
		22	Stop 2	Relay is activated if stop mode 2 is used.	
		23	Speed limit 2	Relay is activated if the alternative speed limits have been selected.	
		24	DC brake	Relay is activated if DC brake is active.	
		28	PowerPLC	Digital output is controlled by a PowerPLC program. This option will be shown if [G1.5] is different than Standard.	
		29	Communications	Relay is controlled from communications.	
		32	Crane brake	The relay will be activated as in option " 05 run", considering the ON delay time set in [G8.1.2], [G8.1.6] or [G8.1.10] (depending on the which relay is used: 1, 2 or 3), and will be deactivated when motor speed is below the speed set in G8.1.53.	
		34	Warnings	The relay is energized when there is any warning.	
		35	Copy digital input 1	Copies the corresponding digital input and closes the relay when the digital input is active. Options $44-51,55$ and 56 will only be available if an I/O expansion board has been connected.	
		36	Copy digital input 2		
		37	Copy digital input 3		
		38	Copy digital input 4		
		39	Copy digital input 5		

Screen	Range	Function			Set on run
		40	Copy digital input 6		
		44	Copy digital input 7		
		45	Copy digital input 8		
		46	Copy digital input 9		
		47	Copy digital input 10		
		48	Copy digital input 11		
		49	Copy digital input 12		
		50	Copy digital input 13		
		51	Copy digital input 14		
		52	User's fault group 1		
		53	User's fault group 2	Allow selecting a group to configure user faults.	
		54	User's fault group 3		
		56	Start/Stop delay	The relay will be enabled once the waiting time set by the user before starting or stopping has elapsed (G7.1.3, G7.1.4, G7.1.5, G7.1.10, G7.1.9, G7.2.4, G7.2.6).	
		57	Copy digital input 15	Copies the corresponding digital input and closes the	
		58	Copy digital input 16	relay when the digital input is active.	
G8.1.2-Relay 1 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0s	Allows setting a delay time before activating relay 1 . If during this ON delay time the activation condition disappears, the relay will not be activated.			YES
G8.1.3-Relay 1 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0s	Allows setting a delay time before deactivating relay 1. If during this OFF delay time the deactivation condition disappears, the relay will remain activated.			YES
G8.1.4-Relay 1 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 1 functionality. Relay 1 has one normally open contact (connection $1 / 2$ of J 5 connector) and one normally closed contact (connection 2/3, J5).			NO
			OPT	TION	
			No	logic remains unchanged.	
			Yes	s relay logic.	
G8.1.5-Relay 2 source select = Always OFF	00 to 58	Note: See [G8.1.1].			NO
$\begin{aligned} & \text { G8.1.6-Relay } 2 \mathrm{ON} \\ & \text { delay }=0.0 \mathrm{~s} \end{aligned}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 2 . If during this ON delay time the activation condition disappears, the relay will not be activated.			YES
G8.1.7-Relay 2 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 2 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.			YES
G8.1.8-Relay 2 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 2 functionality. Relay 2 has one normally open contact (connection $1 / 2$ of J 6 connector) and one normally closed contact (connection 2/3, J6).			NO
		OPT. FUNCTION No Relay logic remains unchanged. Yes Inverts relay logic.			
G8.1.9-Relay 3 source select = Always OFF	00 to 58	Note: See [G8.1.1].			NO
$\begin{aligned} & \text { G8.1.10-Relay } 3 \mathrm{ON} \\ & \text { delay }=0.0 \mathrm{~s} \end{aligned}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 3 . If during this ON delay time the activation condition disappears, the relay will not be activated.			YES
G8.1.11-Relay 3 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 3 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.			YES
G8.1.12-Relay 3 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 3 functionality. Relay 3 has one normally open contact (connection $1 / 2$ of J7 connector) and one normally closed contact (connection 2/3, J7).			NO
			OPT.	TION	
			No	logic remains unchanged.	
			Yes	s relay logic.	
G8.1.13-Relay 4 src select = Always OFF	00 to 58	Note: See [G8.1.1].			NO
$\begin{aligned} & \text { G8.1.14-Relay } 4 \text { ON } \\ & \text { delay }=0.0 \mathrm{~s} \end{aligned}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 4. If during this ON delay time the activation condition disappears, the relay will not be activated.			YES
G8.1.15-Relay 4 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 4. If during this OFF delay time the deactivation condition disappears, the relay will remain activated.			YES

Screen	Range		Function	$\begin{aligned} & \text { Set on } \\ & \text { run } \end{aligned}$
G8.1.16-Relay 4 inversion = No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 4 functionality. Relay 4 is connected to J 11 connector and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.17-Relay 5 src select $=$ Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.18-Relay 5 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 5 . If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.19-Relay 5 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 5 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.20-Relay 5 inversion = No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 5 functionality. Relay 5 is connected to J 12 connector and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.21-Relay 6 source select = Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.22-Relay 6 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 6 . If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.23-Relay 6 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 6 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.24-Relay 6 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 6 functionality. Relay 6 is connected to J 13 connector and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.25-Relay 7 source select = Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.26-Relay 7 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 7. If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.27-Relay 7 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 7 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.28-Relay 7 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 7 functionality. Relay 7 is connected to J 13 connector and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.29-Relay 8 src select = Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.30-Relay 8 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 8 . If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.31-Relay 8 OFF delay $=0.0 \mathrm{~s}$	$0.0 \text { to } 999.0 \mathrm{~s}$	Allows setting a delay time before deactivating relay 8 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.32-Relay 8 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 8 functionality. Relay 8 is connected to J 12 connector and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.33-Relay 9 src select = Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.34-Relay 9 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time If during this ON delay tim	fore activating relay 9 . e activation condition disappears, the relay will not be activated.	YES
G8.1.35-Relay 9 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time If during this OFF delay tim	fore deactivating relay 9 . he deactivation condition disappears, the relay will remain activated.	YES

Screen	Range		Function	Set on run
G8.1.36-Relay 9 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 9 functionality. Relay 9 is connected to J 10 connector of the second expansion board and its contact is, by default, normally open.		YES
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.37-Relay 10 src select $=$ Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.38-Relay 10 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 10. If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.39-Relay 10 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 10 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.40-Relay 10 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 10 functionality. Relay 10 is connected to J 11 connector of the second expansion board and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.41-Relay 11 src select = Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.42-Relay 11 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 11 . If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.43-Relay 11 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 11. If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.44-Relay 11 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 11 functionality. Relay 11 is connected to J 12 connector of the second expansion board and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.45-Relay 12 src select = Always OFF	00 to 58	Note: See [G8.1.1].		NO
G8.1.46-Relay 12 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 12. If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.47-Relay 12 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 12 . If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.48-Relay 12 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 12 functionality. Relay 12 is connected to J 13 connector of the second expansion board and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.49-Relay 13 src select $=$ Always OFF	00 to 59	Note: See [G8.1.1].		NO
G8.1.50-Relay 13 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before activating relay 13. If during this ON delay time the activation condition disappears, the relay will not be activated.		YES
G8.1.51-Relay 13 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0 s	Allows setting a delay time before deactivating relay 13. If during this OFF delay time the deactivation condition disappears, the relay will remain activated.		YES
G8.1.52-Relay 13 inversion $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting the logic of relay 13 functionality. Relay 13 is connected to J 14 connector of the second expansion board and its contact is, by default, normally open.		NO
		OPT.	FUNCTION	
		No	Relay logic remains unchanged.	
		Yes	Inverts relay logic.	
G8.1.53-Speed for crane brake $=0.00 \%$	0.00 to 100.00\%	This parameter allows se Brake] will be deactivated	the speed below which any relay configured to option [32 Crane	YES

Subgroup 8.2: Analogue output 1

Screen	Range	Function				Set on run
G8.2.1-A01 source selection = Motor speed	00 to 32	Analogue output 1 is programmable according to the following table:				
		OPT.	DESCR.	FUNCTION	UNITS	
		00	None	Not used.	-	
		01	Motor speed	Signal proportional to the motor speed.	\% Motor speed	
		02	Motor current	Signal proportional to the motor current.	\% Motor rated current	
		03	Motor voltage	Signal proportional to the motor voltage.	\% Motor rated voltage	
		04	Motor power	Signal proportional to the motor power.	\% Motor power	
		05	Motor torque	Signal proportional to the motor torque.	\% Motor torque	
		06	Motor cos phi	Signal proportional to the motor power factor.	\% Motor rated Cosine Phi	
		07	Motor temperature	Signal proportional to the motor temperature.	\% Motor temperature	
		08	Motor frequency	Signal proportional to the input frequency.	\% Input frequency $(50 \mathrm{~Hz}=100 \%)$	
		09	Input voltage	Signal proportional to the input voltage.	\% Equipment rated voltage	
		10	Bus voltage	Signal proportional to the DC Bus voltage.	\% Motor voltage $\text { x } 1.414$	
		11	Drive temperature	Signal proportional to the drive temperature.	\% Drive temperature	
		12	Speed reference	Signal proportional to the speed reference.	\% Motor speed	
		14	PID reference	Signal proportional to the reference in PID mode.	\%	
		15	PID feedback	Signal proportional to the feedback in PID mode.	\%	
		16	PID error	Signal proportional to the error (difference between reference and feedback) in PID mode.	\%	NO
		17	Analog Input 1	Analogue input 1 signal is transferred to analogue output.	\%	
		18	Analog Input 2	Analogue input 2 signal is transferred to analogue output.	\%	
		19	Analog Input 3	Analogue input 3 signal is transferred to analogue output.	\%	
		21	Max scale	It forces the output to maximum value.	100\% bottom scale	
		22	Absolute speed	Signal proportional to the motor speed without sign (absolute value).	\% Motor speed	
		23	Absolute torque	Signal proportional to the motor torque without sign (absolute value).	\% Motor torque	
		24	Analog Input 1+2	The average of the analogue inputs 1 and 2.	\%	
		25	PID output	Signal proportional to the output in PID mode.	\%	
		26	Encoder speed	Signal proportional to the real speed of the encoder	\% rpm (motor nameplate)	
		28	PowerPLC	The analogue output is controlled by a Pow option will be shown whenever the pro [G1.5] is different than Standard.	rPLC macro. This ram selected in	
		29	Analog Input 4	Analogue input 4 signal is transferred to analogue output.	\%	
		30	Analog Input 5	Analogue input 5 signal is transferred to analogue output.	\%	
		31	Analog Input 6	Analogue input 6 signal is transferred to analogue output.	\%	
		32	Analog Input 7	Analogue input 7 signal is transferred to analogue output.	\%	
		Note: Options 29-32 will only be available if the corresponding inputs/outputs are enabled.				

Screen	Range	Function	Set on run
G8.2.2-A01 format $=$ $4.20 \mathrm{~mA}$	$\begin{gathered} 0-10 \mathrm{~V} \\ \pm 10 \mathrm{~mA} \\ 0-20 \mathrm{~mA} \\ 4-20 \mathrm{~mA} \\ \pm 20 \mathrm{~mA} \end{gathered}$	Analogue output 1 is programmable in one of the five available formats according to the system requirements.	NO
G8.2.3-A01 low level $=0 \%$	-250\% to 250\%	Minimum level of analogue output 1. Minimum level setting can be higher than the maximum level setting. This allows the user to achieve inverse scaling; as the reference magnitude set in [G8.2.1] increases, the output frequency will decrease and vice versa.	YES
G8.2.4-A01 high level $=100 \%$	-250\% to 250\%	Maximum level of analogue output 1. Maximum level setting can be lower than the minimum level setting. This allows the user to achieve inverse scaling; as the reference magnitude set in [G8.2.1] increases, the output frequency will decrease and vice versa.	YES
G8.2.5-A01 filter = Off	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \text { s } \end{gathered}$	Filter for analogue input 1 value. If the analogue signal appears slightly unstable, improved stability and response can be achieved with the addition of a suitable filter value. Note: Filter use can add a slight delay to the analogue output signal.	YES

Subgroup 8.3: Analogue output 2 / pulse

Screen	Range	Function	Set on run
G8.3.0-Enable Pulse Mode $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Configures the AO2 to work with a pulse sensor through J18 connector, position 2-1. J18 is located in the control board.	NO
G8.3.1-AO2 source selection $=$ Motor current	00 to 32	Analogue output 2 is programmable in the same way as analogue output 1 . See configuration options in G8.2.1.	NO
$\begin{aligned} & \text { G8.3.2-AO2 format }= \\ & 4 . .20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 0-10 \mathrm{~V} \\ \pm 10 \mathrm{~V} \\ 0-20 \mathrm{~mA} \\ 4-20 \mathrm{~mA} \\ 10 \mathrm{~mA} \end{gathered}$	Analogue output 2 is programmable in one of the five available formats according to the system requirements. Available if [G8.3.0 = NO].	NO
G8.3.3-AO2 low level $\text { = } 0 \text { \% }$	-250 to 250\%	Minimum level of analogue output 2. Minimum level setting can be higher than the maximum level setting. This allows the user to achieve inverse scaling; as the reference magnitude set in [G8.3.1] increases, the output frequency will decrease and vice versa. Available if [G8.3.0 $=\mathrm{NO}$].	YES
G8.3.4-AO2 high level $\text { = } 100 \%$	-250 to 250\%	Maximum level of analogue output 2. Maximum level setting can be lower than the minimum level setting. This allows the user to achieve inverse scaling; as the reference magnitude set in [G8.3.1] increases, the output frequency will decrease and vice versa. Available if [G8.3.0 = NO].	YES
G8.3.5-AO2 filter = Off	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \text { s } \end{gathered}$	Filter for analogue input 2 value. If the analogue signal appears slightly unstable, improved stability and response can be achieved with the addition of a suitable filter value. Note: Filter use can add a slight delay to the analogue output signal.	YES
G8.3.6-Max pulse number $=100$	0 to 32000	Adjusts the maximum number of pulses per second that can be generated by the output. Available if [G8.3.0 = YES].	YES
G8.3.7-Pulse duty $=$ 50 \%	20\% to 65\%	Time percentage when pulses are in active level. Work cycle. Available if [G8.3.0 = YES].	YES

Subgroup 8.4: Analogue output 3

Note: This group will only be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Subgroup 8.5: Analogue output 4

Note: This group will be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Subgroup 8.6: Analogue output 5

Note: This group will be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Subgroup 8.7: Analogue output 6

Note: This group will be shown if an analogue I/O expansion board has been connected. Check document SD75MA05 for further information.

Group 9: Comparators

Subgroup 9.1: Comparator 1

Screen	Range			Function	Set on run
G9.1.1-Comp 1 source sel = None	00 to 32	The source for Comparator 1 can be set according to the following table:			NO
		OPT.	FUNCTION	DESCRIPTION	
		00	None	There is no source for the comparator.	
		01	Motor speed	Comparison signal is motor speed.	
		02	Motor current	Motor current signal.	
		03	Motor voltage	Motor voltage signal.	
		04	Motor power	Motor power.	
		05	Motor torque	Motor torque signal.	
		06	Motor cos phi	Motor cosine phi.	
		07	Motor temperature	Motor temperature signal.	
		08	Motor frequency	Drive input frequency.	
		09	Input voltage	Drive input voltage.	
		10	Bus voltage	DC Bus voltage.	
		11	Drive temperature	Drive temperature.	
		12	Speed reference	Speed reference.	
		14	PID reference	Speed reference in PID mode.	
		15	PID feedback	System feedback signal.	
		16	PID error	PID error. Difference between reference and feedback signal of the sensor.	
		17	Analog Input 1	Signal connected to analogue input 1.	
		18	Analog Input 2	Signal connected to analogue input 2.	
		19	Analog Input 3	Signal connected to analogue input 3.	
		20	Analog Input 1+2	The average of the analogue inputs 1 and 2.	
		22	Absolute speed	Comparison signal is motor speed without sign (absolute value).	
		24	Absolute torque	Comparison signal is motor torque without sign (absolute value).	
		25	Encoder speed	Comparison signal is the speed measured by the encoder.	
		27	PID output	Output in PID mode.	
		28	Max scale	We will get a maximum value, forcing the comparator to obtain the needed status.	
		29	Analog Input 4	Signal connected to analogue input 4.	
		30	Analog Input 5	Signal connected to analogue input 5.	
		31	Analog Input 6	Signal connected to analogue input 6.	
		32	Analog Input 7	Signal connected to analogue input 7.	
		Note: Options 29-32 will only be available if the corresponding inputs/outputs are enabled.			
G9.1.2-Comp 1 type = Normal	Normal Window	Allows selecting the operation mode of Comparator 1.			YES
		UNCTIONNormal	ON DESCRIPT		
			Comparator will be activated when the ON condition is given and will be deactivated when the OFF condition is given.		
			Comparator 2, and additi than limit 1,	be activated when signal is within the limits 1 and ly when limit 2 is higher than limit 1 . If limit 2 is lower parator output logical function will be inverted.	

Screen	Range	Function	Set on run
$\text { G9.1.3-Comp } 1 \text { ON }$ $\text { level = } 100 \text { \% }$	-250% to 250%	Selects the activation value of Comparator 1 output. The comparator output will be activated if comparator source signal, selected in G9.1.1, is higher than the value set here, and the delay time G9.1.5 has elapsed. Available if [G9.1.2 $=$ NORMAL].	YES
G9.1.4-Comp 1 OFF level $=0$ \%	-250% to 250%	Selects the activation value of Comparator 1 in Window mode. The comparator output will be activated if comparator source signal, selected in G9.1.1, is lower than the value of this parameter, and the delay time G9.1.5 has elapsed. Available if [G9.1.2 = NORMAL].	YES
G9.1.3-Comp 1 window limit 2 = 100 \%	-250% to 250%	Defines one of the limits to activate Comparator 1 in Window mode. The comparator output will be activated when comparator source signal, selected in G9.1.1, is within the two limits G9.1.3 and G9.1.4, and ON delay time G9.1.5 has elapsed. Available if [G9.1.2 = WINDOW].	YES
G9.1.4-Comp 1 window limit $1=0 \%$	-250% to 250%	Defines one of the limits to activate Comparator 1 in Window mode. The comparator output will be activated when comparator source signal, selected in G9.1.1, is within the two limits G9.1.3 and G9.1.4, and ON delay time G9.1.5 has elapsed. Available if [G9.1.2 = WINDOW].	YES
G9.1.5-Comp 1 ON delay $=0.0 \mathrm{~s}$	0.0 to 999.0s	Delay time for the Comparator 1 output activation. When the activation condition is satisfied, whether Normal or Window mode is enabled, the timer delays the activation of this signal during the time set in this parameter.	NO
G9.1.6-Comp 1 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0s	Delay time for the Comparator 1 output deactivation. When the activation condition is met, whether Normal or Window mode is enabled, the timer delays the activation of this signal during the time set in this parameter.	NO
G9.1.7-Comp 1 output function $=$ Not used	00 to 12	Allows selecting the function to be activated with the output Comparator 1 according to the following table.	YES
		OPT. $\begin{aligned} & \text { FUNCTION }\end{aligned}$	
		00 Not used \quad Comparator output deactivated.	
		01 Start / Stop \quadWhen it is activated, it gives the start command. When it is deactivated, it gives the stop command.	
		02 Stop 1 Activates the stop mode 1.	
		03 Stop 2 ${ }^{0}$ (Activates the stop mode 2.	
		04 Reset \quad Resets the drive.	
		05 Start + Inch 1 Activates Start + Inch speed 1.	
		06 Start + Inch 2 Activates Start + Inch speed 2.	
		07 Start + Inch 3 Activates Start + Inch speed 3.	
		08 Invert speed It inverts the speed direction.	
		09 Acc / Dec 2 Activates the alternative ramps.	
		10 Reference 2 \quad Activates the alternative reference.	
		11 Speed limit $2 \times$ Activates the alternative speed limits.	
		12 Fault Drive will trip by F73, F74 or F75 when comparator ON condition is satisfied.	
		Note: If activation and deactivation levels are adjusted to very similar values and delay times are set to OFF, any noise in the signals of the selected source may cause an oscillation in the comparator activation and, therefore, incorrect operation. You should set these levels keeping a reasonable margin between them, and if necessary, set a delay time to improve the operation.	

Subgroup 9.2: Comparator 2

Screen	Range		Function	Set on run
G9.2.1-Comp 2 source sel = None	00 to 32	Sets the source for Comparator 2. See [G9.1.1] for configuration options.		NO
G9.2.2-Comp 2 type = Normal	Normal Window	Allows selecting the operation mode of Comparator 2.		YES
		FUNCTION	DESCRIPTION	
		Normal	Comparator will be activated when the ON condition is given and will be deactivated when the OFF condition is given.	
		Window	Comparator will be activated when signal is within the limits 1 and 2 , and additionally when limit 2 is higher than limit 1 . If limit 2 is lower than limit 1 , comparator output logical function will be inverted.	

Screen	Range	Function	Set on run
$\begin{aligned} & \text { G9.2.3-Comp } 2 \text { ON } \\ & \text { level }=100 \% \end{aligned}$	-250\% to 250\%	Selects the activation value of Comparator 2 output. The comparator output will be activated if comparator source signal, selected in G9.2.1, is higher than the value set here, and the delay time G9.2.5 has elapsed. Available if [G9.2.2 = NORMAL].	YES
G9.2.4-Comp 2 OFF level $=0$ \%	-250\% to 250\%	Selects the activation value of Comparator 2 in Window mode. The comparator output will be activated if comparator source signal, selected in G9.2.1, is lower than the value of this parameter, and the delay time G9.2.5 has elapsed. Available if [G9.2.2 $=$ NORMAL].	YES
G9.2.3-Comp 2 window limit $2=$ 100 \%	-250\% to 250\%	Defines one of the limits to activate Comparator 2 in Window mode. The comparator output will be activated when comparator source signal, selected in G9.2.1, is within the two limits G9.2.3 and G9.2.4, and ON delay time G9.2.5 has elapsed. Available if [G9.2.2 = WINDOW].	YES
G9.2.4-Comp 2 window limit $1=0 \%$	-250% to 250%	Defines one of the limits to activate Comparator 2 in Window mode. The comparator output will be activated when comparator source signal, selected in G9.2.1, is within the two limits G9.2.3 and G9.2.4, and ON delay time G9.2.5 has elapsed. Available if [G9.2.2 = WINDOW].	YES
$\begin{aligned} & \text { G9.2.5-Comp } 2 \mathrm{ON} \\ & \text { delay }=0.0 \mathrm{~s} \end{aligned}$	0.0 to 999.0s	Delay time for the Comparator 2 output activation. When the activation condition is satisfied, whether Normal or Window mode is enabled, the timer delays the activation of this signal during the time set in this parameter.	YES
G9.2.6-Comp 2 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0s	Delay time for the Comparator 2 output deactivation. When the activation condition is met, whether Normal or Window mode is enabled, the timer delays the activation of this signal during the time set in this parameter.	YES
G9.2.7-Comp 2 output function $=$ Not used	0 to 12	Allows selecting the function to be activated with the output Comparator 2 . See configuration options in [G9.1.7].	NO

Subgroup 9.3: Comparator 3

Screen	Range		Function	Set on run
G9.3.1-Comp 3 source sel = None	00 to 32	Sets the source for Comparator 3. See [G9.1.1] for configuration options.		NO
G9.3.2-Comp 3 type = Normal	Normal Window	Allows selecting the operation mode of Comparator 3.		YES
		FUNCTION	DESCRIPTION	
		Normal	Comparator will be activated when the ON condition is given and will be deactivated when the OFF condition is given.	
		Window	Comparator will be activated when signal is within the limits 1 and 2 , and additionally when limit 2 is higher than limit 1 . If limit 2 is lower than limit 1 , comparator output logical function will be inverted.	
$\begin{aligned} & \text { G9.3.3-Comp } 3 \text { ON } \\ & \text { level }=100 \% \end{aligned}$	-250\% to 250\%	Selects the activation value of Comparator 3 output. The comparator output will be activated if comparator source signal, selected in G9.3.1, is higher than the value set here, and the delay time G9.3.5 has elapsed. Available if [G9.3.2 = NORMAL].		YES
G9.3.4-Comp 3 OFF level = 0 \%	-250% to 250%	Selects the activation value of Comparator 3 in Window mode. The comparator output will be activated if comparator source signal, selected in G9.3.1, is lower than the value of this parameter, and the delay time G9.3.5 has elapsed. Available if [G9.3.2 $=$ NORMAL].		YES
G9.3.3-Comp 3 window limit 2 = 100 \%	-250\% to 250\%	Defines one of the limits to activate Comparator 3 in Window mode. The comparator output will be activated when comparator source signal, selected in G9.3.1, is within the two limits G9.3.3 and G9.3.4, and ON delay time G9.3.5 has elapsed. Available if [G9.3.2 = WINDOW].		YES
G9.3.4-Comp 3 window limit $1=0 \%$	-250\% to 250\%	Defines one of the limits to activate Comparator 3 in Window mode. The comparator output will be activated when comparator source signal, selected in G9.3.1, is within the two limits G9.3.3 and G9.3.4, and ON delay time G9.3.5 has elapsed. Available if [G9.3.2 = WINDOW].		YES
$\begin{aligned} & \text { G9.3.5-Comp } 3 \text { ON } \\ & \text { delay }=0.0 \mathrm{~s} \end{aligned}$	0.0 to 999.0s	Delay time for the Comparator 3 output activation. When the activation condition is satisfied, whether Normal or Window mode is enabled, the timer delays the activation of this signal during the time set in this parameter.		YES
G9.3.6-Comp 3 OFF delay $=0.0 \mathrm{~s}$	0.0 to 999.0s	Delay time for the Comparator 3 output deactivation. When the activation condition is met, whether Normal or Window mode is enabled, the timer delays the activation of this signal during the time set in this parameter.		YES
G9.3.7-Comp 3 output function $=$ Not use	0 to 12	Allows selecting the function to be activated with the output Comparator 3 . See configuration options in [G9.1.7].		NO

Group 10: Limits

Subgroup 10.1: Speed

Screen	Range	Function	Set on run
G10.1.1-Minimum limit $1=-100.00 \%$	$\begin{gathered} -250.00 \% \text { to } \\ \text { G10.1.2 } \end{gathered}$	Sets the minimum speed limit 1 that can be applied to the motor by the drive. It is set in percentage of motor rated speed.	YES
G10.1.2-Maximum limit $1=100.00 \%$	G10.1.1 to 250.00\%	Sets the maximum speed limit 1 that can be applied to the motor by the drive. If the reference is higher than the value set in this parameter, the drive will ignore that reference and will operate the motor at the value set in this screen. It is set in percentage of motor rated speed.	YES
G10.1.3-Minimum limit $2=-100.00 \%$	$\begin{gathered} -250.00 \% \text { to } \\ \text { G10.1.4 } \end{gathered}$	Sets the minimum speed limit 2 that can be applied to the motor by the drive. It is set in percentage of motor rated speed. Note: Selection of minimum speed limit 2 is done via a digital input or comparator output function.	YES
G10.1.4-Maximum limit $2=100.00 \%$	G10.1.3 to 250.00\%	Sets the maximum speed limit 2 that can be applied to the motor by the drive. If the reference is higher than the value set in this parameter, the drive will ignore that reference and will operate the motor at the value set in this screen. It is set in percentage of motor rated speed. Note: Selection of maximum speed limit 2 is done via a digital input or comparator output function	YES
G10.1.5-Maximum lim timeout $=$ Off s	$\begin{gathered} 0.1 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=0.0 \end{gathered}$	Allows setting a delay to trigger a fault 'F49 SPD LIMIT' once the drive reaches the configured speed limit.	YES
G10.1.6-Minimum lim timeout $=$ Off s	$\begin{gathered} 0.1 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=0.0 \end{gathered}$	Establishes the period that the drive must maintain the minimum speed before triggering F23.	YES
G10.1.7-Invert speed$=\text { No }$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows inverting motor speed. This function helps to prevent the motor from running in negative direction.	YES
		OPT. FUNCTION	
		No Motor running in negative rotation direction is not allowed.	
		Yes Motor running in both rotation directions is allowed.	

Subgroup 10.2: Current/Torque

Screen	Range	Function	Set on run
G10.2.1-Current limit $=1.2 \ln \mathrm{~A}$	$\begin{gathered} \text { 0.2In to1.5ln } \mathrm{A} \\ \text { Off }=15001 \end{gathered}$	Output current limit. The current limit speed reduction algorithm limits the motor load current keeping it within this programmed limit. When this protection is active the SD750FR status of current limitation (ILT) is displayed. Note: It is not advisable, in applications when the motor is at steady speed status, that current limit works constantly. This may cause damage to the motor and torque variations can affect the load. Current limit should only work when an overload occurs, or due to excessive acceleration and deceleration values, or because motor data details are entered incorrectly.	YES
$\begin{aligned} & \text { G10.2.2-I limit } \\ & \text { timeout = Off } \end{aligned}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	Allows adjusting the time to trigger a fault once current limit has been reached.	YES
G10.2.3-Current limit $2=1.2 \ln \mathrm{~A}$	$\begin{gathered} 0.2 \ln \text { to } 1.5 \ln \mathrm{~A} \\ \text { Off }=15001 \end{gathered}$	Similar to [G10.2.15], but for the alternative current limit.	YES
$\begin{aligned} & \text { G10.2.4-I limit } 2 \\ & \text { timeout = Off } \end{aligned}$	$\begin{aligned} & 0 \text { to } 68 \mathrm{~s} \\ & \text { Off }=69 \end{aligned}$	Adjusts the time to trigger a fault if the alternative current limit (G10.2.4) is reached.	YES
G10.2.5-I lim 2 switch speed $=0$ Off	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250 \% \end{gathered}$	Allows setting the speed level to change from current limit 1 to current limit 2. Additionally, it is possible to select the alternative current limit 2 using a digital input configured as option 23.	YES
G10.2.6-Torque limit $=150.0 \text { \% }$	0.0 to 250.0 \%	Output torque limit. The torque limit speed reduction algorithm limits the maximum torque of the motor set. It is set as a percentage of motor rated torque.	YES
G10.2.7-Torque limit timeout $=0$ ff	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	Allows adjusting the time to trigger a fault once torque limit has been reached.	YES
G10.2.8-Torque limit $2=150.0 \%$	0.0 to 250.00 \%	Similar to G10.2.6, but for the alternative torque limit.	YES
G10.2.9-Torque lim 2 timeout $=$ Off	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	Allows adjusting the time to trigger a fault once the alternative torque limit has been reached (G10.2.8).	YES
G10.2.10-Torque I 2 swt speed = Off \%	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250.00 \% \end{gathered}$	Allows setting the torque level to change from torque limit 1 to torque limit 2. It is also possible to select the alternative torque limit 2 using a digital input configured as option 48.	YES

Screen	Range		Function	Set on run
G10.2.11-I limit Regen = Off	$\begin{gathered} \text { Off }=18.3 \\ 40.1 \% \text { to } \\ 150.00 \% \cdot \ln \mathrm{~A} \text { (drive) } \end{gathered}$	Output current limit during regeneration. It keeps the motor load current within the adjusted limit during regeneration. When this protection is active, the display shows that the SD750FR is limiting current (RIL). If this parameter is set to 'OFF', the algorithm will be disabled. Note: Set a slightly lower value than the desired one. Due to motor noise, the current limit may increase.		YES
$\begin{array}{\|l} \hline \text { G10.2.12-I limit } \\ \text { Regen Time }=\text { Off } \\ \hline \end{array}$	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	Allows adjusting the time to trigger a fault once reached the limit of regenerative current. Hidden if [G10.2.11 = Off].		YES
G10.2.13-Reg torque limit = 150.0 \%	0.0 to 250.0 \%	Allows limiting the regenerative torque of the motor.		YES
G10.2.14-Reg torque lim time $=0$ Off	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	Allows defining the maximum time where regenerative torque of the motor can be limited.		YES
$\begin{aligned} & \text { G10.2.15-Disable } \\ & \text { limit } / / T=\text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows disabling the torque/current limit algorithm.		YES
		OPT.	FUNCTION	
		No	Algorithm is enabled. By limiting the current or the torque, the equipment reduces its speed.	
		Yes	Algorithm is disabled but the current and torque limit timeout protection is still active (G10.2.2 and G10.2.7) which could cause a drive trip.	

Group 11: Protections

Subgroup 11.1: Input

Screen	Range		Function	Set on run
G11.1.1-Supply under voltage $=0.875 \mathrm{Vn}$	See Note	Input low voltage protection is a combination of parameters G11.4 and G11.5. Drive turns off its output generating a fault 'F14 LW V IN' when average voltage, measured in the drive input, is below the value set in G11.4 (set value according to the drive frame), for the time set in G11.5. Note: The range of this parameter varies depending on the equipment's rated voltage: $\begin{aligned} & 400 \mathrm{~V}: 0.75 \mathrm{Vn} \text { to } 0.9 \mathrm{Vn} \\ & 440 \mathrm{~V}: 0.75 \mathrm{~V} \text { to } 0.9 \mathrm{Vn} \\ & 480 \mathrm{~V}: 0.75 \mathrm{Vn} \text { to } 0.9 \mathrm{Vn} \\ & 690 \mathrm{~V}: 0.75 \mathrm{Vn} \text { to } 0.9 \mathrm{Vn} \end{aligned}$		YES
G11.1.2-Under voltage timeout $=5.0$ s	$\begin{gathered} 0.0 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=60.1 \end{gathered}$			YES
G11.1.3-Supply over voltage $=1.075 \mathrm{Vn}$	See Note	Input high voltage protection is a combination of parameters G11.1.3 and G11.1.4. Drive turns off its output generating a fault ' $\mathrm{F} 13 \mathrm{HI} \vee \mathrm{N}$ ' when average voltage, measured in the drive input, is above the value set in G11.1.3 (set value according to the drive frame), for the time set in G11.1.4. Note: The range of this parameter varies depending on the equipment's rated voltage: $\begin{aligned} & 400 \mathrm{~V}: 1.05 \mathrm{Vn} \text { to } 1.15 \mathrm{Vn} \\ & 440 \mathrm{~V}: 1.05 \mathrm{Vn} \text { to } 1.15 \mathrm{Vn} \\ & 480 \mathrm{~V}: 1.05 \mathrm{Vn} \text { to } 1.15 \mathrm{Vn} \\ & 690 \mathrm{~V}: 1.05 \mathrm{~V} \text { to } 1.15 \mathrm{Vn} \end{aligned}$		YES
G11.1.4-Over voltage timeout $=5.0$ s	$\begin{gathered} 0.0 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=60.1 \end{gathered}$			YES
G11.1.5-Low voltage behavior $=$ Faults	No faults Faults Stop Dip voltage recover	Modifies the drive response following an input power loss while motor is running according to the following table:		YES
G11.1.6-LVRT input threshold = 25 \%	15 to 50 \%	Defines the voltage threshold to enable LVRT. Whenever voltage drops below this value, the drive will enter in voltage dip.		YES
G11.1.7-LVRT output threshold = 5 \%	1 to 15\%	Defines the voltage threshold to disable LVRT. Once voltage overcomes this value, the drive will exit the voltage dip.		YES

Subgroup 11.2: Motor

Screen	Range		Function	Set on run
G11.2.1-Stop timeout = Off	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 999 \mathrm{~s} \end{gathered}$	It supplies a safety functin time set in this param will fault on 'F45 STOP This function is used to predict time to stop. A turn off the output volt has not stopped com system operation. Stop	o stop the drive automatically if the motor has not stopped after the s elapsed and if the drive has received a stop command. The drive ct from uncontrolled stops where motor needs a longer time than the as other protections integrated into the drive, this time can be set to d stop the motor by free run if this time has elapsed and the motor Controlled stop time is calculated in standard conditions during ime should be set to a higher value than controlled stop time value.	YES
G11.2.2-Ground current limit = 20 \%	$\begin{gathered} \text { Off }=0 \\ 0 \text { to } 30 \% \text { ln } \end{gathered}$	Allows drive to turn off if the leakage current	ut to the motor generating a fault 'F20 GROUND FLT' automatically above the value set in this parameter.	YES
G11.2.3-I out asym trip delay $=5.0 \mathrm{~s}$	$\begin{gathered} 0.0 \text { to } 10.0 \mathrm{~s} \\ \text { Off }=10.1 \end{gathered}$	Allows the setting of a After this time, the driv	time before the trip when an output current unbalance is detected. ip by 'F19 IMB I OUT'	YES
G11.2.4-V asym out trip delay $=5.0 \mathrm{~s}$	$\begin{gathered} 0.0 \text { s to } 10.0 \mathrm{~s} \\ \text { Off }=10.1 \end{gathered}$	Allows setting a delay time before tripping once output voltage imbalance has been detected. Once this time is elapsed, the drive trips due to 'F18 IMB V OUT'.		YES
G11.2.5-PT100 motor fault $=0$ ff ${ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { Off }=-21 \\ -20 \text { to } 180^{\circ} \mathrm{C} \end{gathered}$	Configures the threshold temperature to trigger F79 PT100 once the time specified in G11.2.6 has been exceeded.		YES
G11.2.6-PT100 fault timeout $=30 \mathrm{~s}$	0 to 3000s	Sets the time where temperature must be equal to the value set in G11.2.5 to trigger fault F79 PT100. This parameter is hidden if [G11.2.5 = Off].		YES
G11.2.7-Fault with no load $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows activating operation without load (with no motor connected). If "NO" is selected, the drive triggers due to F39 NO LOAD when 5\% of the speed is reached and no load has been detected. In case of selectins "YES" the drive will be able to start without load.		YES
G11.2.8-Overload level = 20.0 A	0.0 to 3000A	Overload protection is a combination of parameters G11.2.8, G11.2.9 and G11.2.10. Drive turns off its output generating a fault 'F57 PUMP OVERLOAD' when the output current of the drive is higher than the current set in G 11.2 .8 for the time adjusted in parameter G11.2.10. By means of parameter G11.2.9, we can adjust the value of low-pass filter for the current reading to avoid oscillations.		YES
G11.2.9- Overload filter $=0$ ff	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \mathrm{a} 20.0 \mathrm{~s} \end{gathered}$			YES
G11.2.10-Overload delay $=60 \mathrm{~s}$	0.0 a 480.0s			YES
G11.2.11-Underload enable $=\mathrm{No}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows the possibility of protecting the pump from underload status.		
		OPT.	FUNCTION	
		No	Underload protection disabled.	
		Yes	Underload protection enabled.	
		Enabling the underload protection in this parameter, the equipment will protect the pump against underloads when: - The motor current is below the underload current specified in G11.2.12. - The motor speed is greater above the underload speed specified in G11.2.13. - The delay time for activating the underload protection is exceeded by G11.2.14. If three previous conditions are given, the drive will stop the pump to protect it from underload status.		YES
G11.2.12-Underload current $=1.0 \mathrm{ln} \mathrm{A}$	0.2 ln to $1.5 \ln \mathrm{~A}$	Sets the underload current below which the first detection condition to activate the protection is met. This parameter operates together with parameters G11.2.13 and G11.2.14. This value depends on the drive capacity.		YES
G11.2.13-Underload speed = 100.0 \%	0.0\% to 250\%	Sets the underload speed above which the second detection condition to activate the protection is met. This parameter operates together with parameters G 11.2 .12 and G 11.2 .14 .		YES
G11.2.14-Underload flt dly $=10.0 \mathrm{~s}$	0 to 999.9 s	Sets delay time to activate the underload protection. The drive will wait for this time before activating the protection and then will stop. This parameter operates together with parameters G11.2.12 and G11.2.13.		YES
G11.2.15-PMSM Desync. Thresh = 40.0 \%	0.0 to 100.0 \%	Synchronization threshold, indicates the maximum speed difference from the reference speed allowed in the motor. Available if [G19.1.1= Synchronous].		YES
G11.2.16-PMSM Desync. Time $=0.10 \mathrm{~s}$	$\begin{gathered} 0.0 \text { to } 5.00 \mathrm{~s} \\ \text { Off }=5.01 \end{gathered}$	Synchronization time, indicates the maximum time of desynchronization allowed in the motor. Available if [G19.1.1= Synchronous].		YES

Group 12: Auto reset

Group 13: Fault history

Screen	Range		Function	Set on run
G13.1-Fault Register $1=0$	0 to 1024	A list of the last six faults in chronological order is shown. The first parameter from this group (G13.1) allows visualizing information about the last fault and, also, it will be used as the first register of fault history. Each time that a fault occurs, the drive shows the fault in parameter G13.1. After the fault is solved and reset, this fault will be shifted to the next position of the register (G13.2). The previous faults will shift down one position. The oldest fault message (G13.6) will be discarded.		YES
$\begin{aligned} & \text { G13.1b-Date = } \\ & \text { 01/01/2000 00:00 } \end{aligned}$	$\begin{gathered} \text { 01/01/2000 00:00 to } \\ 31 / 12 / 2127 \text { 23:59 } \end{gathered}$			YES
G13.2-Fault Register $2=0$	0 to 1024			YES
$\begin{aligned} & \text { G13.2b-Date = } \\ & \text { 01/01/2000 00:00 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 01/01/2000 00:00 to } \\ 31 / 12 / 212723: 59 \\ \hline \end{array}$			YES
G13.3-Fault Register $3=0$	0 to 1024			YES
$\begin{aligned} & \text { G13.3b-Date = } \\ & \text { 01/01/2000 00:00 } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { 01/01/2000 00:00 to } \\ 31 / 12 / 2127 \text { 23:59 } \\ \hline \end{array}$			YES
G13.4-Fault Register $4=0$	0 to 1024	The drive is rearmed by pressing the STOP-RESET key from the display, the RESET button on the control cabinet door or by using an external display if it exists. The configured faults can be automatically rearmed using Auto Reset (see group G12).		YES
$\begin{aligned} & \text { G13.4b-Date }= \\ & \text { 01/01/2000 00:00 } \end{aligned}$	$\begin{gathered} \text { 01/01/2000 00:00 to } \\ 31 / 12 / 2127 \text { 23:59 } \end{gathered}$			YES
G13.5-Fault Register $5=0$	0 to 1024			YES
$\begin{aligned} & \text { G13.5b-Date = } \\ & \text { 01/01/2000 00:00 } \end{aligned}$	$\begin{array}{\|c\|} \hline 01 / 01 / 200000: 00 \text { to } \\ 31 / 12 / 2127 \text { 23:59 } \\ \hline \end{array}$			YES
G13.6-Fault Register $6=0$	0 to 1024			YES
$\begin{aligned} & \text { G13.6b-Date = } \\ & \text { 01/01/2000 00:00 } \end{aligned}$	$\begin{gathered} \text { 01/01/2000 00:00 to } \\ 31 / 12 / 2127 \text { 23:59 } \\ \hline \end{gathered}$			YES
G13.7-Erase fault history $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	OPT.	FUNCTION	YES
		No	Function disabled.	
		Yes	It erases fault history (last six faults). The screen returns to default value 'NO', after all the faults have been erased.	

Group 14: Multi-references

Screen	Range	Function					Set on run
G14.1-Multi reference $1=10.00 \%$	$\begin{aligned} & -250.00 \text { to } \\ & 250.00 \% \end{aligned}$	Allows setting multiple references. These references will be activated using digital inputs configured as multiple speed references or PID references. To use this function, select operating mode, 'G4.1.4 DIGIT I MODE=2 or 3' (2 or 3-wires multireference). Then, it is necessary to select the multi-references as the speed reference in parameter 'G3.1 REF 1 SPD=Multireferences' or as a PID references in 'G6.1 SEL REF=Multireferences'. Units are set in either percentage of motor rated speed or feedback analogue input range (if an analogue unit is selected). The following table shows the relationship between DI3,DI4, DI5 inputs when activated in multireference mode (as a percentage of motor rated speed):					
G14.2-Multi reference $2=20.00 \%$							
G14.3-Multi reference $3=30.00 \%$							
G14.4-Multi reference $4=40.00 \%$							YES
G14.5-Multi reference $5=50.00 \%$		PARM	REF	DI3	DI4	D15	
		G14.1	Multireferences 1	0	0	X	
G14.6-Multi reference		G14.2	Multireferences 2	0	X	0	
$6=60.00 \%$		G14.3	Multireferences 3	0	X	X	
G14.7-Multi reference 7 = 70.00 \%		G14.4	Multireferences 4	X	0	0	
		G14.5	Multireferences 5	X	0	X	
		G14.6	Multireferences 6	X	X	0	
		G14.7	Multireferences 7	X	X	X	
	Note: 0: Not active and X : Active.						

Group 15: Inch speeds

Group 16: Skip frequencies

Screen	Range	Function	Set on run
G16.1-Skip frequency $1=0.00 \%$	-250.00 to 250.00 \%	Allows user to select a first skip frequency to avoid resonance frequencies or any other frequencies that the motor will avoid using as reference. The drive will pass through these frequencies during speed shifts (acceleration / deceleration) but will not remain operation at them. This value defines de center of the skip bandwidth 1, which size must be configured in [G16.2].	YES
G16.2-Skip bandwidth 1 = Off	$\begin{gathered} \text { Off = } 0 \\ 1 \text { to } 20 \% \end{gathered}$	Sets the skip frequency bandwidth 1 . Skip frequencies are those where the drive will not operate, even if during acceleration or deceleration the drive passes through such frequencies. Skip bandwidth 1 will have the size set on this parameter and will be centered with respect to [G16.1]. For example, if a 10% is selected, skip bandwidth will be from [G16.1]: 5%, to [G16.1] $+5 \%$. Let us suppose that the range goes from 20% to 30%. In case the reference frequency is within that range, say 27%, we have two scenarios: a) If the new setpoint is greater than the current setpoint, the equipment has to accelerate to the lower limit of the band and there is no action until the new setpoint exceeds the frequency hopping band. When this condition is met, the equipment must accelerate. b) In the event that the new setpoint is less than the current setpoint, the team will decelerate to the upper limit of the band and will not transfer it until the setpoint is less than the lower limit of the frequency hop band. When this happens, then the equipment decelerates until it reaches the setpoint. If G 16.2 is set to $0=0 \mathrm{ff}$, the skip frequency 1 will not be considered.	YES
G16.3-Skip frequency $2=0.00 \%$	-250.00 to 250.00 \%	Allows user to select a second skip frequency to avoid resonance frequencies or any other frequencies that the motor will avoid using as reference. The drive will pass through these frequencies during speed shifts (acceleration / deceleration) but will not remain operation at them. This value defines de center of the skip bandwidth 1, which size must be configured in [G16.4].	YES
G16.4-Skip bandwidth 2 = Off	$\begin{gathered} \text { Off = } 0 \\ 1 \text { to } 20 \% \end{gathered}$	Sets the skip frequency bandwidth 2 . It will have the size set on this parameter and will be centered with respect to [G16.3]. See [G16.2] for an example.	YES
G16.5-Skip frequency $3=0.00 \%$	-250.00 to 250.00 \%	Allows user to select a third skip frequency to avoid resonance frequencies or any other frequencies that the motor will avoid using as reference. The drive will pass through these frequencies during speed shifts (acceleration / deceleration) but will not remain operation at them. This value defines de center of the skip bandwidth 1, which size must be configured in [G16.6].	YES
G16.6-Skip bandwidth 3 = Off	$\begin{gathered} \text { Off = } 0 \\ 1 \text { to } 20 \% \end{gathered}$	Sets the skip frequency bandwidth 3 . It will have the size set on this parameter and will be centered with respect to [G16.5]. See [G16.2] for an example.	YES
G16.7-Skip frequency $4=0.00 \%$	-250.00 to 250.00 \%	Allows user to select a fourth skip frequency to avoid resonance frequencies or any other frequencies that the motor will avoid using as reference. The drive will pass through these frequencies during speed shifts (acceleration / deceleration) but will not remain operation at them. This value defines de center of the skip bandwidth 1, which size must be configured in [G16.8]	YES
G16.8-Skip bandwidth 4 = Off	$\begin{gathered} \text { Off= } 0 \\ 1 \text { to } 20 \% \end{gathered}$	Sets the skip frequency bandwidth 4 . It will have the size set on this parameter and will be centered with respect to [G16.3]. See [G16.2] for an example.	YES

Group 17: Brake

Screen	Range		Function	Set on run
G17.1-DC brake time = Off	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 99.0 \text { s } \end{gathered}$	Allows setting the time during which the DC brake will be activated.		YES
G17.2-DC brake current level = 0 \%	0 to 100\%	Allows setting the current level applied during braking. The proper current value must be set to brake the load inertia correctly. If this value is too low, the load will not be stopped in time. If the value is too high the power components of the drive will be stressed.		YES
G17.3-DC break on delay $=0$ ff	$\begin{gathered} \text { Off }=0.0 \\ 0.0 \text { to } 99.0 \mathrm{~s} \end{gathered}$	Allows setting a delay time in the activation of the DC brake after the drive stops (drive OFF status).		YES
G17.4-Heating current $=$ Off	$\begin{aligned} & \text { Off = } 0.0 \\ & 1 \text { to } 30 \% \end{aligned}$	Set a suitable value to avoid humidity condensation forming in the motor. Note: Modify this parameter only if necessary. \qquad CAUTION: Although the motor is not running there is dangerous voltage. Run Led will be lit during this process. Be careful to avoid property damage and personal injuries.		YES
G17.5-Dynamic brake = No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	User must configure the drive if an external dynamic brake is going to be used.		NO
		OPT.	FUNCTION	
		No	External brake is not going to be used, the application does not require it.	
		Yes	An external brake is going to be installed.	

Group 18: Encoder

Information regarding this group, as well as all parameters directly related to the encoder, should be consulted in the manual SD75MA04.

Group 19: Fine tuning

Subgroup 19.1: IGBT control

Screen	Range		Function	Set on run
G19.1.1b- Synchronous control = PMSM	PMSM Sync Excited	This selection defines the synchronous drive control type. Available if [G19.1.1 = Synchronous].		YES
		OPTIONPMSMSync Excited	FUNCTION	
			Control mode for synchronous motors (PMSM: Permanent Magnet Synchronous Motor).	
			Control mode for the excitation of synchronous motors.	
G19.1.1b.2-Perm Mag Sync Mot = V/Hz	V/Hz F.Oriented Open Loop F.Oriented Closed Loop HEPOL	This selection defines the synchronous drive control type in PMSM. Available if [G19.1.1 = Synchronous] and [G19.1.1b = PMSM].		YES
		OPTION	FUNCTION	
		V/Hz	Scalar control mode, in which control is applied by applying a voltage / frequency ramp to the motor.	
		F.Oriented Open Loop	Vector control for synchronous motors.	
		F.Oriented Closed Loop	Vector control with encoder.	
		HEPOL	High Efficiency Performance Open Loop. Uses the block of maximum torque per ampere for flow control.	
G19.1.3-PID Vout = No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows enabling or disabling regulation of output voltage to keep it at its rated value despite load conditions.		NO
G19.1.6-Auto Tuning$=\text { No }$	No Static Dynamic	With this option, the drive calculates internally motor parameters to use them in the vector control.		NO
		OPTION	ON	
		No Auto T	ing disabled.	
		Static Auto T	ing enable. No motor spinning is required.	
		Dynamic $\begin{array}{l}\text { Auto T } \\ \text { load. }\end{array}$	ing enable. It requires the motor working without	
G19.1.7- Overmodulation $=0$ ff	$\begin{gathered} \text { Off }=0.00 \\ 0.01 \text { to } 100.00 \% \end{gathered}$	With this option, it is possible to supply more motor voltage at 50 Hz .		YES
G19.1.8-Pewave = Yes	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	This control mode improves motor noise tone.		YES
		FUNCTION		
		YesPewave control activ Commutation frequ improve the noise t	Commutation frequency (G19.1.9) is slightly modified on a random basis to improve the noise tone generated by the motor.	
G19.1.9-Switching frequency $=4000 \mathrm{~Hz}$	4000 to 8000 Hz	Allows varying the drive switching frequency. This function can be used to reduce motor noise.		YES

Subgroup 19.2: Motor load

Screen	Range	Function	Set on run
G19.2.1-Minimum flux level = 100 \%	40 to 130\%	Allows setting the minimum flux level used by the motor during low load conditions. With this dynamic system of flux optimization, noise and power losses are reduced. Adaptation of the flux level during low load conditions occurs automatically. The algorithm will be disabled when this parameter is set to 100%.	YES
$\begin{array}{\|l\|} \hline \text { G19.2.2-Boost } \\ \text { voltage }=0.0 \% \end{array}$	0.0 to 10.0\%	Sets an initial voltage value applied to the motor during the starting. By using this function, it is possible to improve breakaway torque when starting heavy loads. Note: Set a low value first. Increase the value gradually until the load starts easily.	YES
G19.2.3-Boost current $=0.0 \%$	0.0 to 100.0%	Sets an initial current value applied to the motor during the starting. By using this function, it is possible to improve breakaway torque when starting heavy loads. This parameter will be ignored if [G19.2.2 has been previously adjusted]. Note: Set a low value first. Increase the value gradually until the load starts easily.	YES
$\begin{aligned} & \text { G19.2.4-Slip } \\ & \text { compensation = No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	If this function is active, it helps to compensate the slip on the motor. In case of heavy load able of provoking a high slip during the starting, set this parameter to YES.	YES
G19.2.5-Current limit factor $=0.0 \%$	0.0 to 20.0\%	Allows active frequency reduction, by varying speed, to maintain output current within controllable margins (the display will show LTI). With this parameter it is possible to improve the stability of the current limitation function considering motor slip. Note: It is recommended to adjust this value in cases where current limitation is unstable. A los value will improve stability, although the preventive actions will act before..	YES
G19.2.6-Initial frequency $=0.0$ \%	0.0 to 100.0\%	Allows setting the initial frequency that will be applied to the drive at the moment of starting.	YES

Screen	Range		Function	Set on run
$\begin{aligned} & \text { G19.2.7-Damping = } \\ & 2 \% \end{aligned}$	0 to 10\%	Some motors can be destabilized and suffer shaking when working with soft loads or at certain speeds. The damping parameter is introduced to control stability. Note: No-load damping produces small variations (normally $<0.1 \mathrm{~Hz}$). Therefore, if the application requires an absolute fixed frequency output, this parameter must be set to 0.00%.		YES
G19.2.8-Reg bus voltage	$\begin{gathered} \text { For VIN }=400 \mathrm{~V} / \\ 500 \mathrm{~V} \text { Bus: } 625 \text { to } \\ 800 \mathrm{~V} \end{gathered}$	During deceleration with loads with inertia, the drive decelerates keeping the level of the bus voltage set by this parameter, when load and inertia conditions allow it. If when decelerating, the fault 'F2 V LIM FLT' occurs, decrease the value of this parameter.		YES
	$\begin{aligned} & \text { For VIN = 690V } \\ & \text { Bus: } 950 \text { to } 1251 \mathrm{~V} \end{aligned}$			
G19.2.9-Boost Band $=100.00 \%$	0.00 to 100.00 \%	If G 19.2 .2 is different (check G19.2.2), thus voltage value to the co If this value is 100%, it If this value is 0% it ov value. Note: If G19.2.2 $=0.0 \%$,	0.0%, then this parameter regulates the band of the Vboost function lowing the voltage/frequency ramp to be customized from the initial sponding straight line without Vboost. aintains the voltage/frequency ramp with respect to G19.2.2. rides G19.2.2 and the voltage/frequency ramp loses the initial voltage he band setting has no effect.	YES
G19.2.10-Flux Control = Proportional torque	Proportional Torque Maximum Torque Per Ampere	Allows to enable the control of flux in the control mode for synchronous motors (PMSM). Available if [G19.1.1 = PMSM].		YES
		OPCIÓN	FUNCTION	
		Proportional Torque	Use only when the motor nameplate data is known. Sets the control of flux to be proportional to the theoretical torque.	
		Maximum Torque Per Ampere	Use when internal motor parameters are known. Sets a maximum torque per ampere control with field weakening.	
G19.2.11-Maximum Flux $=100.00$ \%	100.00 a 130.00\%	Allows to set the threshold of the magnetic flux once the control of flux is enabled. Available if [G19.1.1 = Synchronous].		YES
$\begin{array}{\|l\|} \hline \text { G19.2.12-Q } \\ \text { Reference }=0.00 \% \\ \hline \end{array}$	-250.00 to 250.00 \%	Allows to set the reactive power in the equipment while there is synchronous excitation. Available if [G19.1.1 = Synchronous] and [G19.1.1b = Sync Excited].		YES

Note: Check the example for $\mathrm{G} 19.2 .2=[0 \%, 5 \%$ and $10 \%]$ and the effect of G 19.2 .9 by $\mathrm{G} 19.2 .2=10 \%$:

Subgroup 19.3: Motor model

Screen	Range	Function	Set on run
$\text { G19.3.1-R stator }=0.1$ mOhms	0.1 to $6553.5 \mathrm{~m} \Omega$	Stator resistance (Rs): It is used to compensate the iron losses and copper losses of the motor.	YES
$\text { G19.3.2-R rotor }=0.1$ mOhms	0.1 to $6553.5 \mathrm{~m} \Omega$	A key parameter that directly concerns the output torque. Available if [G19.1.1 = Asynchronous].	YES
$\begin{aligned} & \mathrm{G} 19.3 .3-\mathrm{L} \\ & \text { magnetization }=0.1 \\ & \mathrm{mH} \end{aligned}$	0.1 to 6553.5 mH	It is an interesting parameter if the equipment works with vector control and G19.1.2 = AVC. It is the main inductance of the motor that defines the magnetic field strength. It is a key parameter that directly concerns the motor flux. Typical values can range from 75% (small motors) to 800% (large motors). Available if [G19.1.1 = Asynchronous].	YES
$\begin{aligned} & \text { G19.3.3- } \\ & \text { B.E.F.(KV/Krpm) = } \\ & \text { 0.000 } \end{aligned}$	0.000 to 5.000	Back electromagnetic force. Available if [G19.1.1 = Synchronous].	YES
G19.3.4-L leakage stator $=0.00 \mathrm{mH}$	0.00 to 655.35 mH	Allows adjusting the stator dispersion inductance. Available if [G19.1.1 = Asynchronous].	YES
G19.3.4-L Stator D axis $=0.00 \mathrm{mH}$	0.00 to 100.00 mH	Allows adjusting the inductance in the D-axis of the stator. Available if [G19.1.1 = Synchronous].	YES
G19.3.5-L leakage rotor $=0.00 \mathrm{mH}$	0.00 to 655.35 mH	Allows adjusting the rotor dispersion inductance. Available if [G19.1.1 = Asynchronous].	YES

Screen	Range	Function	Set on run
G19.3.5-L Stator Q axis $=0.00 \mathrm{mH}$	0.00 to 100.00 mH	Allows adjusting the inductance in the Q-axis of the stator. Available if [G19.1.1 = Synchronous].	YES
G19.3.6-Field weakening $=100.0$ \%	$\begin{gathered} 50.00 \text { to } \\ 130.10 \% \text { (Auto) } \end{gathered}$	Allows to adjust when the field starts to be reduced. The weakening field occurs when the drive cannot give more voltage than it receives from the power supply, and at the same time the frequency exceeds the rated frequency of the motor. In this event, only the frequency will be regulated, and the voltage will remain constant, producing the weakening of the motor field. Note: "Auto" mode allows to optimize field reduction.	YES
G19.3.7-Temperature coef $\mathrm{R}=20.0$ \%	0.0 to 50.0\%	Allows adjusting the coefficient of the thermal model of the motor, based on the motor current, which will depend on the application.	YES
$\begin{aligned} & \text { G19.3.8-Flux tuning }= \\ & 2.0 \% \end{aligned}$	0.0 to 10.0\%	Allows adjusting a higher start torque in PMC control type torque or speed in closed loop [G19.1.2]. Note: If even set to the maximum value, moving the motor is still not possible, it may be because the resistive torque is too high for the equipment, or because there is a mechanical problem. In addition, overmagnetization may occur in the motor, resulting in an excess of magnetic saturation of the motor.	YES
G19.3.9-Params online estim $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows enabling or disabling parameters estimation while the motor is running. If enabled, the drive will correct dynamically the variation of G19.3.1 and G19.3.2 depending on the temperature of the motor.	YES

Subgroup 19.4: Vector PID

Screen	Range	Function	Set on run
$\begin{aligned} & \text { G19.4.1-Kp speed = } \\ & 10.0 \% \end{aligned}$	0.0 to 100.0\%	Allows setting the proportional gain value of the speed regulator. If a greater control response is needed, this value must be increased. Note: When increasing too much this value, the system can be destabilized.	YES
$\begin{aligned} & \text { G19.4.2-Ki speed = } \\ & \text { 10.0 \% } \end{aligned}$	0.0 to 100.0\%	Allows the adjustment of the integration time of the speed regulator.	YES
$\begin{aligned} & \text { G19.4.3-Kp torque = } \\ & 100.0 \% \end{aligned}$	0.0 to 200.0\%	Allows setting the value of the proportional gain of the overcurrent regulator. If a greater control response is needed this value must be increased. Note: When increasing too much this value, the system can become more unstable.	YES
$\begin{aligned} & \text { G19.4.4-Ki torque = } \\ & 10.0 \% \end{aligned}$	0.0 to 100.0\%	Allows the adjustment of the integration time of the overcurrent regulator. In the event of needing more precision, this value must be increased. Note: When increasing too much this value, the system can get slower.	YES
G19.4.5-Kp I = 10.0 \%	0.0 to 100.0\%	Allows the setting of the proportional gain value of the flow regulator.	YES
G19.4.6-Kil = 15.0 \%	0.0 to 100.0\%	Allows the adjustment of the integration time of the flow regulator.	YES
G19.4.7-Kp Sensorless = 50.0 \%	0.0 to 100.0\%	Allows setting the proportional gain value of the speed regulator. If a greater control response is needed, this value must be increased. Note: When increasing too much this value, the system can be destabilized.	YES
$\begin{aligned} & \text { G19.4.8-Ki } \\ & \text { Sensorless = } 50.0 \% \end{aligned}$	0.0 to 100.0\%	Allows setting the value of the integral gain of the regulator of the speed estimator. If a greater control response is needed, this value must be increased. Note: When increasing too much this value, the system can be destabilized.	YES

Group 20: Serial Communication

Subgroup 20.1: Modbus RTU

Screen	Range	Function		Set on run
G20.1.1-Display baudrate $=921600$ bps baud/s	0 to 8	Allows selecting the baud rate of the communication between the display and the control board.		YES
		OPT.	SPEED bps	
		0	2400	
		1	4800	
		2	9600	
		3	19200	
		4	57600	
		5	115200	
		6	230400	
		7	460800	
		8	921600	
G20.1.2-Modbus address $=10$	1 to 255	Sets the identification address assigned to the drive for communication via the Modbus network. If communication with several drives is required, a different address must be set for each unit.		YES
G20.1.3-Modbus baudrate $=9600 \mathrm{bps}$ baud/s	0 to 8	Sets the data transmission speed for MODBUS serial communications. This rating should be the same as the rating of the master of the communication bus on which the drive is integrated.		YES
		OPT.	SPEED bps	
		0	2400	
		1	4800	
		2	9600	
		3	19200	
		4	57600	
		5	115200	
		6	230400	
		7	460800	
		8	921600	
G20.1.4-Modbus parity $=$ None	Odd None Even	MODBUS parity setting. Used for data validation. If you do not want to validate data, set this parameter to 'NONE'. Parity selection should be the same as the parity of the master of the communication bus on which the drive is integrated.		YES
G20.1.5- Communication timeout $=$ Off	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 600 \mathrm{~s} \end{gathered}$	If the time elapsed from the last valid data transmission has overcome the communications timeout, it is possible to trigger a fault whenever user requires it. Serial communication with the drive is possible through RS485 terminals or through optional serial communication interfaces. Note: Do not modify this parameter if it is not strictly necessary.		YES

Subgroup 20.2: Profibus configuration

Note: This subgroup allows configuring the Profibus extension board. Check document SD75MA06 for further information.

Subgroup 20.6: Custom modbus configuration

Screen			

Screen			Range

Subgroup 20.7: Custom modbus values

Screen	Range	Function	Set on run
G20.7.1-Custom modbus map value1 $=0$	0 to 65535	These parameters can be used to read and write the values of the registers that were previously configured in G20.6. They are grouped as follows: - Subgroup 20.7.1: Values 1 to 30 - Subgroup 20.7.2: Values 31 to 60 - Subgroup 20.7.3: Values 61 to 90 - Subgroup 20.7.4: Values 91 to 120 Note: When reading or writing a variable, keep in mind the type of variable and its Modbus range to ensure values are interpreted correctly.	YES
G20.7.2-Custom modbus map value2 $=0$			
...			
$\begin{aligned} & \text { G20.7.120-Custom } \\ & \text { modbus map value } 30 \\ & =0 \\ & \hline \end{aligned}$			

Group 21: Networks

Subgroup 21.1: Ethernet

Note: This subgroup allows configuring the Ethernet IP board. Refer to the manual SD75MA01 for further information.

Subgroup 21.2: Client TCP

Screen	Range	Function	Set on run
G21.2.1-Client TCP timeout $=1000 \mathrm{~s}$	0.05 to 5000	Maximum time allowed to enable communication.	YES
G21.2.2-Client TCP retries $=1$	0 to 4	Number of allowed retries to enable communication.	YES

Subgroup 21.3: EtherNet / IP

Note: This subgroup allows configuring the Ethernet IP net. Refer to the manual SD75MA01 for further information.

Subgroup 21.4: Profinet

Note: This subgroup allows configuring the Profinet. Refer to the manual SD75MA03 for further information.

Group 23: Expansion

Subgroup 23.1: PT100

Note: This sub-group allows to configure the PT100 card. Refer to the SD75MA08 manual for further information.

Subgroup 23.2: Input/output

This group shows the status of the inputs and outputs expansion boards and allows setting the led in test mode (fast blinking).

Note: The parameters associated with analogue inputs 4 to 7 and analogue outputs 3 to 6 will only be displayed if an inputs and outputs expansion board has been connected (G23.2.5 bis G23.2.8). Check document SD75MA05 for further information.

Screen	Range		Function	Set on run
G23.2.1-IO digital A status $=0$ ff	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	Shows the status of the digital inputs and outputs expansion board A.		NO
		OPT.	FUNCTION	
		Off	The board is not connected.	
		On	The board is connected.	
$\begin{aligned} & \text { G23.2.2-IO digital A } \\ & \text { test }=\text { No } \end{aligned}$	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Enables led fast blinking. This is useful to help locate the board when several boards of the same type are connected. Note: This parameter only appears if the I/O expansion board A has been connected.		NO
G23.2.3-IO digital B status $=0$ ff	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	Shows the status of the digital inputs and outputs expansion board B.		NO
		OPT.	FUNCTION	
		Off	The board is not connected.	
		On	The board is connected.	

| Screen | Range | Function | Set on
 run |
| :--- | :---: | :--- | :---: | :---: |
| G23.2.4-IO digital B
 test $=$ No | No
 Yes | Enables led fast blinking. This is useful to help locate the board when several boards of the same
 type are connected.
 Note: This parameter only appears if the $/ / O$ expansion board B has been connected. | NO |

Subgroup 23.3: Communications

Note: The parameters associated with Ethernet IP will only be displayed if an inputs and outputs expansion board has been connected (parameters G23.3.4 to 23.3.6). Check document SD75MA01 for further information.

The parameters associated with the Profibus board will only be displayed if an inputs and outputs Profibus board has been connected (parameters G23.3.7 to G23.3.9). Check document SD75MA06 for further information.

Screen	Range		Function	Set on run
G23.3.1-Profinet board status $=$ Off	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	Shows the status of the Profinet board.		NO
		OPT.	FUNCTION	
		Off	The board is not connected.	
		On	The board is connected	
G23.3.2-Profinet board test $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Enables the LED fast blinking. This is useful to locate the board in case several boards of the same type are connected. Note: This parameter will only appear if a Profinet board has been connected.		NO
G23.3.3-Profinet Com Error $=$ Fault	OffWarning Fault	Allows defining the behavior of the drive in case communication with the Profinet board is lost.		NO
		OPT.	FUNCTION	
		Off	Drive will remain operating normally.	
		Warning	Warning "W48:Profinet expansion" will be triggered. Check SD75MA03.	
		Fault	Fault "F108:Expansion Profinet comm" will be triggered and the drive will stop. Check SD75MA03.	

Subgroup 23.4: Others

Screen	Range	Function	Set on run
G23.4-Remove All Exp Boards $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	Allows to delete the serial number of the connected expansion boards.	NO
		OPT. FUNCTION	
		NoThe serial numbers of the connected expansion boards are not deleted.	
		Yes \quad The serial numbers of the connected expansion boards are deleted.	

Group 24: Rectifier

This group shows the bridge rectifier specific parameters.

Subgroup 24.1: Rectifier configuration

Screen	Range	Function			Set on run
G24.1.1-Vdc ref mode = Auto	Fixed Auto	Allows to select the bus DC voltage adjust mode.			YES
G24.1.2-Vdc ref = 0 V	(*)	This parameter allows setting the DC bus voltage when parameter G24.1.1 is set to Fixed. A high Vdc could cause greater power losses and a high output dV/dt value. It is recommended to set it following the next equation: $\text { Vdcref }=\operatorname{Vin}^{*} \sqrt{ } 2^{*} 1.1$ Note: (*)			YES
$\begin{aligned} & \text { G24.1.3-Cos phi = } \\ & 1.00 \end{aligned}$	0.90 to 1.00	This parameter allows setting the displacement power factor (cos phi).			YES
G24.1.4-Cos phi setting = Capacitive	Capacitive Inductive	This parameter allows the selection between capacitive or inductive cos phi.			YES
G24.1.5-Delay off rect $=0 \mathrm{~s}$	$\begin{aligned} & 0 \text { to } 250 \text { s } \\ & \text { Off }=251 \end{aligned}$	This parameter allows to delay the rectifier bridge switching off. This parameter increases the dynamic response in applications with continuous start and stop commands (cranes, precision conveyors, etc.). It is also possible to start the rectifier bridge automatically when it is connected to the grid (FIXED).			YES
G24.1.6-Eq lin $=$ No	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	This parameter allows to enable the balance of the input current.			YES
G24.1.7-Rectifier frequency $=2800 \mathrm{~Hz}$	2000 to 3000	This parameter a	s setting the rectifier brid	IGBT switching frequency. FREQUENCY	YES
G24.1.8-Delay start inverter $=$ Off	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 25.0 \mathrm{~s} \end{gathered}$	This parameter allows setting the delay time to start the inverter bridge.			YES

Subgroup 24.2: PID configuration

These parameters allow setting the gain values of the bridge rectifier.

Screen	Range	Function	Set on run
G24.2.1-Kp PLL $=$ 10.0%	0.0 to 100.0%	Allows setting the PID proportional gain value of the PLL.	YES
G24.2.2-Ki PLL $=$ 15.0%	0.0 to 100.0%	Allows setting the PID integral gain value of the PLL.	YES
G24.2.3-Kp I Vdc = 10.0\%	0.0 to 100.0%	Allows setting the PID proportional gain value of the bus voltage loop control.	YES
G24.2.4 Ki I Vdc $=$ 3.5%	0.0 to 100.0%	Allows setting the PID integral gain value of the bus voltage loop control.	YES
G24.2.5-Kp I = 10.0\%	0.0 to 100.0%	Allows setting the PID proportional gain value of the current loop control.	YES
G24.2.6-Ki I = 10.0\%	0.0 to 100.0%	Allows setting the PID integral gain value of the current loop control.	YES

Subgroup 24.3: Rectifier protection

Screen	Range	Function	Set on run
$\begin{aligned} & \text { G24.3.1-I lim rect = } \\ & \text { 1.5xIn } \end{aligned}$	1 xln to 2 x In	Allows stopping the drive by generating "R21 lin limit" fault when the input current value is above the threshold.	YES
G24.3.2-I lim rect delay $=$ Off s	$\begin{gathered} 0.0 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=60.1 \end{gathered}$	Allows setting the delay before the fault "R21 lin limit".	YES
$\begin{aligned} & \text { G24.3.3-I imbalance = } \\ & \text { 30.0\% } \end{aligned}$	$\begin{gathered} 00.0 \% \text { to } 50.0 \% \\ \text { Off }=50.1 \end{gathered}$	Allows stopping the drive by generating "R19 lin unbalanced" fault when the inverse input current value is above the threshold.	YES
$\begin{aligned} & \text { G24.3.4-I ground = } \\ & 30.0 \% \end{aligned}$	$\begin{gathered} 00.0 \% \text { to } 50.0 \% \\ \text { Off }=50.1 \end{gathered}$	Allows stopping the drive by generating "R20 Input ground" fault when the ground fault input current value is above the threshold.	YES

Subgroup 24.4: LCL control

Screen	Range		Function	Set on run
G24.4.1-LCL filter mode $=$ RUN	$\begin{aligned} & \text { RUN } \\ & \text { POWER } \end{aligned}$	The LCL filter is equipped with a contactor that isolates the capacitors from the grid and eliminates the stand-by consumption of the filter.		YES
		OPTION	FUNCTION	
		RUN	The contactor is closed with the run command and opened with the rectifier's stop command. Note: if delay IGBT function is enabled, the stop command is given after the time.	
		POWER	The contactor is closed when the power level set in "G24.4.2" is reached. The contactor is opened when the power is below 0.9 x "G24.4.2" and elapsed 60 seconds.	
G24.4.2-LCL filter power $=20.0 \%$	0.0\% to 100.0\%	Allows configu	g the power threshold level to open and close the LCL contactor.	YES
G24.4.3-LCL filter fback dlay $=60.1 \mathrm{~s}$	$\begin{gathered} 0.0 \text { to } 59.9 \mathrm{~s} \\ \text { Off }=60.0 \end{gathered}$	Allows setting and there is n	time for triggering fault R24. During this time, the contactor's run order is active edback signal.	YES

Subgroup 24.5: Self - regulation

Screen	Range	Function		Set on run
G24.5.1-Auto max retries $=$ Off	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 7 \end{gathered}$	This parameter allows setting the number of times the equipment tries to reset after a fault R1, R2, R4, R5, R6, R7, R8, R9. When the selection is followed by a +1 , it means that on the last retry it makes a total reduction of the engine power before resetting (without power).		YES
		OPT.	RESET	
		0	Off	
		1	1	
		2	2	
		3	3	
		4	4	
		5	1+1	
		6	2+1	
		7	3+1	
G24.5.2-Auto delay = 2s	1 to 60 s	This parameter enables to set the delay b	retry attempts.	YES
G24.5.3-Auto reset time $=15 \mathrm{~s}$	1 to 60 s	This parameter enables to set the time to	e count of the number of retries.	YES
G24.5.4-Auto fault report $=$ Yes	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	This parameter enables to set a report continue working without the active rectifi	e the number of retries has been exceeded or until the next stop.	YES

Group 25: Master / Slave

This group must always be configured in SD750 drives frames 9 to 11 .
Note: This group will appear when the optical fiber board is included and the master / slave configuration is enabled in the [G1.9 Master/slave configuration] parameter. Check document SD75MA07 for further information.

Group 26: Fans

Screen	Range	Function		Set on run
G26.1-Fans mode $=$ Run	Off Auto Fixed Run	Selects fans mode operation.		YES
		OPT.	FUNCTION	
		Off	Fans are deactivated.	
		Auto	Temperature mode. Fans speed reference is defined by the slope generated from parameters G 26.2 to G 26.3 .	
		Fixed	Fans will start at the moment they get power supply.	
		Run	Fans are connected with the start command and disconnect at the delay specified in [G26.4 Power off delay] after the equipment has stopped.	
$\begin{aligned} & \text { G26.2-Min } \\ & \text { temperature }=47^{\circ} \mathrm{C} \end{aligned}$	$35^{\circ} \mathrm{C}$ to G 26.3 Max temperature	Defines the temperature to deactivate fans while they are operating. Available if [G26.1 = Auto].		YES
$\begin{aligned} & \text { G26.3-Max } \\ & \text { temperature }=51^{\circ} \mathrm{C} \end{aligned}$	G26.2 Min temperature to $80^{\circ} \mathrm{C}$	Defines the temperature to activate fans. Available if [G26.1 = Auto].		YES
G26.4-Power off delay $=1$ min	1 to 5 min	In run mode, time to turn off fans from the moment when the run command disappears. Available if [G26.1 = Run].		YES

MODBUS COMMUNICATION

Supported Modbus Function Codes

Serial communications protocol implemented by SD750FR drives adheres to Modbus Industrial standard communications protocol of Modicon. From all the functions that exist in the Modbus protocol, the drive uses the Reading and Writing functions:

Function	Description	Registers Number
3	Registers Reading	120
16	Registers Writing	120

The implementation of these function codes in the drive allows reading up to 120 registers from a Parameters Group in a single frame. In case of requiring accessing consecutive memory registers, but which belong to different groups, user will need to use as many frames as groups are involved.

Modbus function code $\mathrm{N}^{\circ} 3$: Registers reading

This function code allows the Modbus controller (master) to read the content of the data registers indicated in the drive (slave). This function code only admits unicast addressing. Broadcast or groupcast addressing are not possible with this function code.

The implementation of this function code in the drive allows reading up to 120 registers of the drive with consecutive addresses in a single frame.

Next, a frame is shown where the master attempts to read the content of 3 registers of a drive where the current used by each phase is. The information that should be attached in the ask frame is the following:

- Data address of the drive.
- Modbus function code (3 Registers reading).
- Starting Data address.
- Registers number for reading.
- CRC-16 code 1.

The answer of the drive (slave) should contain the following fields:

- Data address of the slave.
- Modbus function code (3 Registers reading).
- Bytes number for reading.
- Bytes number / 2 registers.
- CRC-16 code 1.

[^1]Each register consists of 2 bytes (2x8bits=16 bits). This is the default length of all the registers that form the SD750FR.

Example: Modbus Function Code № 3 (Registers Reading)

Suppose we want to read the motor current (nameplate data) via communications. This data corresponds to the parameter [G2.1 = 00.0A]. The frame that should be transmitted is:

Modbus Address	Modbus Function Code	Starting Data Address (40282)	Registers Number	CRC-16 ${ }^{2}$
$0 \times 0 \mathrm{~A}$	0×03	0×0119	0×0001	0×2493

Suppose that instantaneous current of the equipment is $8,2 \mathrm{~A}$. (Modbus value 82 decimal $=0 \times 52$ Hexadecimal). The answer of the slave would be:

Modbus Address	Modbus Function Code	Byte Number	Data (address 20) $(=110)$	CRC-162
$0 \times 0 \mathrm{~A}$	0×03	0×02	0×0052	$0 \times 9 \mathrm{C} 78$

Modbus Function Code ${ }^{0} 16$: Registers Writing

This function code allows the Modbus controller (master) to write the content of the data registers indicated in the drive (slave), whenever they are not Read Only registers. Registers writing by the master does not impede the later modification of those registers by the slave.

The implementation of this function code in the drive allows writing up to 5 registers of the drive in a single frame.

Next, a frame is shown where the master attempts to write the content of one register that stores the acceleration time. The information that should be attached in the request frame is the following:

- Data address of the slave
- Modbus function code (16 Registers writing).
- Starting Data Address.
- Registers number for writing.
- Bytes number for writing.
- Content of registers for writing.
- CRC-16 code 2.

The answer of the slaves includes:

- Data address of the slave.
- Modbus function code (16 Registers writing).
- Starting Data Address.
- Written registers number.
- CRC-16 code ${ }^{2}$.

[^2]
Addressing modes

Broadcast addressing mode

Broadcast addressing mode allows the master to access at the same time all the slaves connected to the Modbus network. The Modbus function code that admits this global addressing mode is:

Function	Description
16	Registers Writing

To access all devices connected to a Modbus network, use the address 0 . When this address is used, all the slaves in the Modbus network will execute the required task but they do not prepare any answer.

Remote control functions

HOST START CONTROL

Screen
Range 0 -

Modbus address 43586
Modbus range 0 to 1
Read / Write YES
Description Allows sending the start command to the equipment through communications network.

HOST STOP CONTROL

Screen	-
Range	$0-1$
Modbus address	43587
Modbus range	0 to 1
Read $/$ Write	YES
Description	Allows sending the stop command to the equipment through communications network.

HOST RESET CONTROL	
Screen	-
Range	$0-1$
Modbus address	43588
Modbus range	0 to 1
Read / Write	YES
Description	Allows sending the reset command to the equipment through communications network.

HOST TRIP CONTROL

Screen

Range $0-1$
Modbus address 43589
Modbus range 0 to 1
Read / Write YES
Description Allows the equipment to generate a fault through communications network.

HOST SPEED / TORQUE REFERENCE CONTROL

Screen
Range $\quad-25000$ to +25000
Modbus address
43570
Modbus range
Read / Write
Description
-25000 to +25000
YES
Allows the assignment of the speed reference through communications network.

Summary of Modbus addresses

Modbus register ‘COMMS STATUS’

This register supplies information about the communication status of the drive, as shown in the following table:

Modbus Address	Bit	Description	Meaning on ' 0 '	Meaning on ' 1 '
43585	0	run	Drive stopped	Drive running
	1	FAULT	No Fault	Fault
	2	WARNING	No Warning	At least one warning present
	3	READY	The drive is not ready to start (a fault or warning is present)	The drive is ready to start (no faults and no warnings)
	4	EXTERNAL POWER SUPPLY	The drive is powered through internal power supply	The drive is powered through external power supply
	5	DELAYING START	Not delaying start	Delaying start
	6	RESERVED	Reserved	Reserved
	7	MOTOR OVERLOAD FAULT	Motor overload fault (F25) is not present	Motor overload fault (F25) is present
	8	RESERVED	Reserved	Reserved
	9	DRIVE AT SET SPEED	Motor speed is different to the reference speed	Motor speed has reached the value set as reference
	10	CURRENT LIMIT	Current limitation warning (ILT) is not present	Current limitation warning (ILT) is present
	11	VOLTAGE LIMIT	Voltage limitation warning (VLT) is not present	Voltage limitation warning (VLT) is present
	12	TORQUE LIMIT	Torque limitation warning (TLT) is not present	Torque limitation warning (TLT) is present
	13	COMPARATOR 1	Comparator 1 is 'OFF'	Comparator 1 is ' ON '
	14	COMPARATOR 2	Comparator 2 is 'OFF'	Comparator 2 is ' ON '
	15	COMPARATOR 3	Comparator 3 is 'OFF'	Comparator 3 is ' ON '

Programming parameters

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G1.1	Lock parameters $=$ No	40011	No Partial lock Total lock Display lock	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	RW
G1.1a	Lock password $=0$	40012	0 to 65535	0 to 65535	RW
G1.1b	Unlock password recov. $=0$	40013	0 to 65535	0 to 65535	RO
G1.2	Language = Spanish	40014	Spanish English German Italian	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	RW
G1.3	Initialize $=$ No init	40015	No init User parameters Motor parameters All parameters	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$	RW
G1.4	Short menu = No	40016	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G1.5	Activate programs $=$ Standard	40017	$\begin{gathered} \text { Standard }=0 \\ 1 \text { to } 8 \end{gathered}$	0 to 8	RW
G1.6	Service group password $=0$	40018	0 to 65535	0 to 65535	RW
G1.7	Network synchronization=0	40019	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G2.1	Motor plate current $=1.0 \mathrm{ln} \mathrm{A}$	40031	0.2 ln to 1.5 ln	2000 to 15000	RW
G2.2	Motor plate voltage $=0 \mathrm{~V}$	40032	0 to 700 V	0 to 700	RW
G2.3	Motor plate power $=\mathrm{Pn}$	40033	0.0 to 6500.0 kW	0 to 65000	RW
G2.4	Motor plate rpm $=1485 \mathrm{rpm}$	40034	0 to 24000 rpm	0 to 24000	RW
G2.5	Motor plate phi cosine $=0.85$	40035	0.01 to 0.99	1 to 99	RW
G2.6	Motor plate frequency $=50 \mathrm{~Hz}$	40036	0 to 599 Hz	0 to 599	RW
G2.7	Motor cooling $=63 \%$	40037	50 to 100%, $\text { Off = } 101$	5000 to 10100	RW
G3.1	Speed ref 1 source = Local	40051	None Analog Input 1 Analog Input 2 Analog Input 1+2 Local Multireferences Motorized potentiometer PID	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	RW
G3.2	Speed ref 2 source $=$ Local	40052	Analog Input 3 Communications Fiber PowerPLC Analog Input 4 Analog Input 5 Analog Input 6 Analog Input 7 EthernetIP	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \end{gathered}$	RW
G3.3	Speed local reference $=100.0 \%$	40053	-250.0 to 250.0	-25000 to 25000	RW
G3.4	Torque ref 1 source = Local	40054	None Analog Input 1 Analog Input 2 Analog Input 1+2 Local Multireferences Motorized potentiometer PID	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 2 \\ & 3 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	RW
G3.5	Torque ref 2 source = Local	40055	Analog Input 3 Communications Fiber PowerPLC Analog Input 4 Analog Input 5 Analog Input 6 Analog Input 7 EthernetIP	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \end{gathered}$	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G3.6	Torque local reference $=100.0 \%$	40056	-250.0 to 250.0 \%	-25000 to 25000	R/W
G4.1.1	Main control mode = Local	40071	None	0	RW
			Local	1	
			Remote	2	
			Communications	3	
G4.1.2	Alternative ctrl mode $=$ Remote	40072	Fiber	4	RW
			PowerPLC	5	
			EthernetIP	6	
G4.1.3	Allow local reset $=$ Yes	40073	No	0	RW
			Yes	1	
G4.1.4	Digital input mode programmable	40074	All programmable	1	RW
			Mref 2 wires	2	
			Mref 3 wires	3	
			Motorized potentiometer	4	
			Resettable potentiometer	5	
G4.1.5	Digital Input 1 = Start / Stop	40075	Not used	00	RW
			Start (NO)	01	
			Stop 1 (NC)	02	
			Stop 2 / Reset	03	
			Stop 1 / Reset	04	
G4.1.6	Digital Input $2=$ Reference 2	40076	Start / Stop	05	RW
			Start / Reset / Stop	06	
			Reset (NC)	07	
			Start + Inch 1	08	
			Start + Inch 2	09	
G4.1.7	Digital Input 3 = Control 2	40077	Invert speed	10	RW
			Invert inches	13	
			Acc / Dec 2	14	
			Reference 2	15	
			Control 2	17	
G4.1.8	Digital Input $4=$ Reset (NC)	40078	Start / Stop / Reset	18	RW
			Stop 2 (NC)	19	
			Speed limit 2	20	
			Start mode 2	22	
			Current limit 2	23	
G4.1.9	Digital Input $5=$ Not used	40079	External emergency	24	RW
			Freemaq Fault	25	
			Start/Stop + Inv	27	
			LCL Regenerative fb	28	
			PTC	29	
G4.1.10	Digital Input 6/PTC = Not used	40080	Speed / Torque	32	RW
			Output 1 Feedback	33	
			Output 2 Feedback	34	
			Output 3 Feedback	35	
			Output 4 Feedback	36	
			Output 5 Feedback	37	
			Output 6 Feedback	38	
			Output 7 Feedback	39	
			Output 8 Feedback	40	
			Universal Stop	41	
			Output 9 Feedback	43	
			Output 10 Feedback	44	
			Output 11 Feedback	45	
			Output 12 Feedback	46	
			Output 13 Feedback	47	
			Torque limit 2	48	
G4.1.11	Digital Input $7=$ Not used	40081	Not used	0	RW
			Start (NO)	1	
			Stop 1 (NC)	2	
G4.1.12	Digital Input $8=$ Not used	40082	Stop 2 / Reset	3	RW
			Stop 1 / Reset	4	
			Start / Stop	5	
			Start / Reset / Stop	6	
G4.1.13	Digital Input $9=$ Not used	40083	Reset (NC)	7	RW
			Start + Inch 1	8	
			Start + Inch 2	9	
G4.1.14	Digital Input $10=$ Not used	40084	Invert speed	10	RW
			Invert inches	13	
		40085	Acc / Dec 2	14	RW
G4.1.15	Digital Input 11 = Not used		Reference 2	15	
			Control 2	17	

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G4.1.16	Digital Input $12=$ Not used	40086	Start / Stop / Reset	18	RW
			Stop 2 (NC)	19	
			Speed limit 2	20	
G4.1.17	Digital Input 13 = Not used	40087	Start mode 2	22	RW
			Current limit 2	23	
			External emergency	24	
G4.1.18	Digital Input $14=$ Not used	40088	Freemaq Fault	25	RW
			Start/Stop + Inv	27	
			LCL Regenerative fb	28	
G4.1.19	Digital Input $15=$ Not used	40089	PTC	29	RW
			Speed / Torque	32	
G4.1.20	Digital Input $16=$ Not used	40090	Output 1 Feedback	33	RW
			Output 2 Feedback	34	
			Output 3 Feedback	35	
			Output 4 Feedback	36	
			Output 5 Feedback	37	
			Output 6 Feedback	38	
			Output 7 Feedback	39	
			Output 8 Feedback	40	
			Universal Stop	41	
			Output 9 Feedback	43	
			Output 10 Feedback	44	
			Output 11 Feedback	45	
			Output 12 Feedback	46	
			Output 13 Feedback	47	
			Torque limit 2	48	
G4.1.27	Feedback Err. Timeout $=1.0 \mathrm{~s}$	40100	0.5 to 60.0s	5 to 600	RW
G4.1.28	Invert Input mode $=0$	41272	0 to 4095	0 to 4095	RW
G4.2.1	Enable sensor = No	40101	No	0	RW
			Yes	1	
G4.2.2	Sensor unit $=1 / \mathrm{s}$	40102	\%	00	RW
			1/s	01	
			$\mathrm{m} 3 / \mathrm{s}$	02	
			1/m	03	
			$\mathrm{m} 3 / \mathrm{m}$	04	
			l/h	05	
			$\mathrm{m} 3 / \mathrm{h}$	06	
			m / s	07	
			m / m	08	
			m / h	09	
			bar	10	
			kPa	11	
			psi	12	
			m	13	
			${ }^{\circ} \mathrm{C}$	14	
			${ }^{\circ} \mathrm{F}$	15	
			K	16	
			Hz	17	
			rpm	18	
G4.2.3	Al1 Format = V	40103			RW
			mA	1	
G4.2.4	Al1 low level $=0.0$ Variable (G4.2.3EA1 Format)	40104	$\begin{aligned} & -10.0 \mathrm{~V} \text { to } \mathrm{G} 4.2 .6 \\ & +0.0 \mathrm{~mA} \text { to } \mathrm{G} 4.2 .6 \\ & \hline \end{aligned}$	$\begin{gathered} -100 \text { to G4.2.6 } \\ 0 \text { to G4.2.6 } \\ \hline \end{gathered}$	RW
G4.2.5	Sensor low level = 0.0 Variable (G4.2.2-Sensor unit)	40105	-3200.0 to G4.2.7 Eng. Units	-32000 to G4.2.7	RW
G4.2.6	Al1 high level $=10.0$ Variable (G4.2.3-EA1 Format)	40106	$\begin{gathered} \mathrm{G} 4.2 .4 \text { to }+10 \mathrm{~V} \\ \mathrm{G} 4.2 .4 \text { to }+20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{G} 4.2 .4 \text { to }+10 \mathrm{~V} \\ \mathrm{G} 4.2 .4 \text { to }+20 \mathrm{~mA} \end{gathered}$	RW
G4.2.7	Sensor high level = 10.0 Variable (G4.2.2-Sensor unit)	40107	G4.2.5 to 3200.0 Eng. Units.	G4.2.5 to 32000	RW
G4.2.8	Al1 Ref speed min $=0.0$ \%	40108	-250.0 to G4.2.9	-25000 to G4.2.9	RW
G4.2.9	Al1 Ref speed max $=100.0$ \%	40109	G4.2.8 to 250.0\%	G4.2.8 to 25000	RW
G4.2.10	Sensor min value $=0.0$ Variable (G4.2.2-Sensor unit)	40110	-3200.0 to G4.2.12 Eng. Units.	-32000 to G4.2.12	RW
G4.2.11	```G4.2.11 Open loop min speed =0.0 %```	40111	-250.0 to 250.0\%	-25000 to 25000	RW
G4.2.12	Sensor max value $=10.0$ Variable (G4.2.2-Sensor unit)	40112	G4.2.10 to 3200.0 Eng. Units.	G4.2.10 to 32000	RW
G4.2.13	Open loop max speed $=100.0$ \%	40113	-250.0 to 250.0\%	-25000 to 25000	RW
G4.2.14	Al1 loss protection $=$ No	40114	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.2.15	Al1 zero band filter = Off	40115	$\begin{gathered} \text { Off = } 0 \\ 0.1 \% \text { to } 2.0 \% \end{gathered}$	0 to 200	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G4.2.16	Al1 stabilizer filter $=$ Off	40116	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 20.0 \text { s } \end{gathered}$	0 to 200	RW
G4.3.0	Enable Pulse In. Mode = No	40120	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.3.1	Enable sensor $=$ No	40121	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.3.2	Sensor unit $=$ Bar	40122	See G4.2.2	0 to 18	RW
G4.3.2	Sensor unit Pulse In. = I/s	40841	$\%$ $\mathrm{~L} / \mathrm{s}$ $\mathrm{m}^{3} / \mathrm{s}$ l / m m / m $1 / \mathrm{h}$ m 3 h $\mathrm{~m} / \mathrm{s}$ m / m m / h	00 01 02 03 04 05 06 07 08 09	RW
G4.3.2b	Pulses per unit $=100$	40842	1 to G4.3.2c	1 to G4.3.2c	RW
G4.3.2c	Max pulses $=1000$	40843	1 to 32000	1 to 32000	RW
G4.3.3	Al2 Format $=\mathrm{mA}$	40123	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.3.4	$\begin{aligned} & \text { Al2 low level = } 4.0 \text { Variable (G4.3.3 } \\ & \text { Al2 Format) } \end{aligned}$	40124	$\begin{aligned} & -10.0 \mathrm{~V} \text { to G4.3.6 } \\ & +0.0 \mathrm{~mA} \text { to } \mathrm{G} 4.3 \end{aligned}$	$\begin{aligned} & \text {-100 to G4.3.6 } \\ & \text { +0 to G4.3.6 } \end{aligned}$	RW
G4.3.5	```Sensor low level = O Variable```	40125	-3200.0 to G4.3.7	-32000 to G4.3.7	RW
G4.3.6	$\begin{aligned} & \text { Al2 high level }=20.0 \text { Variable } \\ & \text { (G4.3.3 Al2 Format) } \end{aligned}$	40126	$\begin{gathered} \mathrm{G} 4.3 .4 \text { to }+10 \mathrm{~V} \\ \mathrm{G} 4.3 .4 \text { to }+20 \mathrm{~mA} \end{gathered}$	$\begin{gathered} \mathrm{G} 4.3 .4 \text { to }+10 \mathrm{~V} \\ \mathrm{G} 4.3 .4 \text { to }+20 \mathrm{~mA} \end{gathered}$	RW
G4.3.7	Sensor high level = 10.0 Variable (G4.3.2 Sensor unit)	40127	G4.3.5 to 3200.0	G4.3.5 to 32000	RW
G4.3.8	Al2 Ref speed min $=0.0$ \%	40128	-250.0\% to G4.3.9	-25000 to G4.3.9	RW
G4.3.9	Al2 Ref speed max $=100.0$ \%	40129	G4.3.8 to 250.0\%	G4.3.8 to 25000	RW
G4.3.10	$\begin{aligned} & \text { Sensor min value }=0.0 \text { Variable } \\ & \text { (G4.3.2 Sensor unit) } \end{aligned}$	40130	-3200.0 to G4.3.12	-32000 to G4.3.12	RW
G4.3.11	Open loop min speed $=0.0$ \%	40131	-250.0 to 250.0\%	-25000 to 25000	RW
G4.3.12	Sensor max value $=10.0$ Variable (G4.3.2 Sensor unit)	40132	G4.3.10 to 3200.0	G4.3.10 to 32000	RW
G4.3.13	Open loop max speed $=100.0$ \%	40133	-250.0 to 250.0\%	-25000 to 25000	RW
G4.3.14	AI2 loss protection $=$ No	40134	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.3.15	Al2 zero band filter = Off	40135	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 2.0 \% \end{gathered}$	0 to 200	RW
G4.3.16	Al2 stabilizer filter $=$ Off	40136	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \text { s } \end{gathered}$	0 to 200	RW
G4.4.0	PT100 Mode $=$ No	40157	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.4.1	Enable sensor $=$ No	40141	$\begin{aligned} & \text { No } \\ & \text { Yes } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.4.2	Sensor unit $=1 / \mathrm{s}$	40142	See G4.3.2	0 to 18	RW
G4.4.3	Al3 Format = V	40143	$\begin{gathered} \mathrm{V} \\ \mathrm{~mA} \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	RW
G4.4.4	Al3 low level $=0.0 \mathrm{~V}$	40144	$\begin{aligned} & -10.0 \mathrm{~V} \text { to } \mathrm{G} 4.4 .6 \\ & +0 \mathrm{~mA} \text { to } \mathrm{G} 4.4 .6 \end{aligned}$	$\begin{aligned} & \text {-100 to G4.4.6 } \\ & +0 \text { to G4.4.6 } \\ & \hline \end{aligned}$	RW
G4.4.5	```Sensor low level = 0.0 Variable (G4.4.2 Sensor Unit)```	40145	-3200.0 to G4.4.7	-32000 to G4.4.7	RW
G4.4.6	Al 3 high level $=10.0 \mathrm{~V}$	40146	$\begin{aligned} & \text { G4.4.4 to }+20.0 \mathrm{~V} \\ & \text { G4.4.4 to }+20 \mathrm{~mA} \\ & \hline \end{aligned}$	$\begin{gathered} \text { G4.4.4 to }+200 \\ \text { G4.4.4 to }+20 \\ \hline \end{gathered}$	RW
G4.4.7	Sensor high level = 10.0 Variable (G4.4.2 Sensor unit)	40147	G4.4.5 to 3200.0	G4.4.5 to 32000	RW
G4.4.8	Al3 Ref speed min $=0.0 \%$	40148	-250.0 to G4.4.9	-25000 to G4.4.9	RW
G4.4.9	Al3 Ref speed max $=100.0$ \%	40149	G4.4.8 to 250.0	G4.4.8 to 25000	RW
G4.4.10	Sensor min value $=0.0$ Variable (G4.4.2 Sensor unit)	40150	-3200.0 to G4.4.12	-32000 to G4.4.12	RW
G4.4.11	Open loop min speed $=0.0 \%$	40151	-250.0 to 250.0\%	-25000 to 25000	RW
G4.4.12	Sensor max value $=10.0 \mathrm{l} / \mathrm{s}$	40152	G4.4.10 to 3200.0	G4.4.10 to 32000	RW
G4.4.13	Open loop max speed $=100.0 \%$	40153	-250.0 to 250.0\%	-25000 to 25000	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G4.4.14	Al3 loss protection $=$ No	40154	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G4.4.15	Al 3 zero band filter $=0 \mathrm{ff}$	40155	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 2.00 \% \end{gathered}$	0 to 200	RW
G4.4.16	Al3 stabilizer filter $=$ Off	40156	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \mathrm{~s} \end{gathered}$	0 to 200	RW
G4.4.17	PT100 stabilizer filt= 10.0s	40160	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \mathrm{~s} \end{gathered}$	0 to 200	RW
G5.1.1	Acceleration rate $1=1.50 \% / \mathrm{s}$	40181	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.1.2	Acceleration rate $2=2.00 \% / \mathrm{s}$	40183	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.1.3	Accel break speed $=$ Off	40185	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250 \% \end{gathered}$	0 to 25000	RW
G5.1.4	Ramp after V.Deep $=1.50$ \%/s	40193	0.05 to $650.00 \% / \mathrm{s}$	5 to 65000	RW
G5.2.1	Deceleration rate $1=1.50 \% / \mathrm{s}$	40182	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.2.2	Deceleration rate $2=2.00 \% / \mathrm{s}$	40184	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.2.3	Decel break speed $=$ Off	40186	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250 \% \end{gathered}$	0 to 25000	RW
G5.3.1	Mot pot accel rate $1=1.00 \% / \mathrm{s}$	40188	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.3.2	Mot pot decel rate $1=3.00 \% / \mathrm{s}$	40189	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.3.3	Mot pot accel rate 2 $=1.00 \% / \mathrm{s}$	40190	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.3.4	Mot pot decel rate $2=3.00 \% / \mathrm{s}$	40191	0.01 to $650.00 \% / \mathrm{s}$	1 to 65000	RW
G5.3.5	Mot pot rate brk speed $=0 \%$	40192	0 to 250\%	0 to 25000	RW
G5.4	Speed filter $=$ Off	40187	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 80.0 \% \end{gathered}$	0 to 8000	RW
G6.1	Setpoint source $=$ Multireferences	40201	None Analog Input 1 Analog Input 2 Analog Input 1+2 Multireferences Local Local PID Analog Input 3 Communications Analog Input 4 Analog Input 5 Analog Input 6 Analog Input 7 Ethernet IP	0 1 2 3 4 5 6 7 8 9 10 11 12 13	RW
G6.2	Local process setpoint $=100.0 \%$	40202	0.0 to 300.0\%	0 to 30000	RW
G6.3	Feedback source $=$ Analog Input 2	40203	None Analog Input 1 Analog Input 2 Analog Input 1+2 Analog Input 3 Communications Motor torque Absolute torque Motor current Motor power Bus voltage Motor cos phi Analog Input 4 Analog Input 5 Analog Input 6 Analog Input 7	$\begin{gathered} 0 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ \hline \end{gathered}$	RW
G6. 4	Process Kc = 8.0	40204	0.1 to 20.0	1 to 200	RW
G6.5	Process $\mathrm{Ti}=0.1 \mathrm{~s}$	40205	$\begin{gathered} 0.1 \text { to } 1000 \mathrm{~s} \\ \text { Infinite }=1001 \mathrm{~s} \end{gathered}$	1 to 10001	RW
G6.6	Process Td $=0.0 \mathrm{~s}$	40206	0.0 to 250.0s	0 to 2500	RW
G6.7	Invert PID = No	40207	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G6.8	Feedback low pass filter $=$ Off	40209	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \text { s } \end{gathered}$	0 to 200	RW
G6.9	Process error $=0.0$ \%	40208	-300.0 to 300.0\%	-30000 to 30000	RO

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
			Ramp	0	
G7.1.1	Main start mode $=$ Ramp	40224	Spin	1	RW
			Spin2	2	
			Ramp	0	
G7.1.2	Alternative start mode $=$ Ramp	40225	Spin	1	RW
			Spin2	2	
G7.1.3	Start delay = Off	40226	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 6500 \text { s } \end{gathered}$	0 to 6500	RW
G7.1.4	Fine restart delay $=$ Off	40229	$\begin{gathered} \text { Off }=0 \\ 0.001 \text { to } 10.000 \mathrm{~s} \end{gathered}$	0 to 10000	RW
G7.1.5	Alt restart delay = Off	40232	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 6500.0 \mathrm{~s} \end{gathered}$	0 to 65000	RW
G7.1.6	Run on supply loss $=$ Yes	40230	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G7.1.7	Start after V.Deep $=$ Spin	40240	Ramp Spin	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	RW
G7.1.8	Run after reset $=$ Yes	40233	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G7.1.9	Delay after Reset $=0.001 \mathrm{~s}$	40236	0.001 to 9.999 s	1 to 9999	RW
G7.1.10	Magnetization time $=$ Off	40235	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 10.0 \text { s } \end{gathered}$	0 to 100	RW
G7.2.1	Main stop mode = Ramp	40221	$\begin{aligned} & \text { Ramp } \\ & \text { Spin } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	RW
G7.2.2	Alternative stop mode $=$ Spin	40222	Ramp Spin	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G7.2.3	Stop mode switch speed = Off	40223	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250 \% \end{gathered}$	0 to 25000	RW
G7.2.4	Stop delay = Off	40227	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 6500 \text { s } \end{gathered}$	0 to 6500	RW
G7.2.5	Stop at min speed $=$ Off	40228	$\begin{gathered} \text { Off }=0 \\ 1.00 \text { to } 250.00 \% \end{gathered}$	0 to 25000	RW
G7.2.6	Power off delay $=$ Off	40234	$\begin{gathered} \text { Off }=0 \\ 0.001 \text { to } 9.999 \mathrm{~s} \end{gathered}$	0 to 9999	RW
G7.3.1	Tune $=10 \%$	40231	0 to 100\%	0 to 10000	RW
G7.3.2	Minimum speed $=0.0$ \%	40982	0.0 to 25.0 \%	0 to 250	RW
G7.3.3	Magnetization tim $=1.0 \mathrm{~s}$	40981	0.1 to 25.0 s	1 to 250	RW
G8.1.0.1.1	User fault 1 G1 = Off	40283	0 to 255	0 to 255	RW
G8.1.0.1.2	User fault 2 G1 = Off	40284	0 to 255	0 to 255	RW
G8.1.0.1.3	User fault 3 G1 = Off	40285	0 to 255	0 to 255	RW
G8.1.0.2.1	User fault 1 G2 = Off	40286	0 to 255	0 to 255	RW
G8.1.0.2.2	User fault $2 \mathrm{G} 2=0 \mathrm{ff}$	40287	0 to 255	0 to 255	RW
G8.1.0.2.3	User fault 3 G2 = Off	40288	0 to 255	0 to 255	RW
G8.1.0.3.1	User fault 1 G3 = Off	40289	0 to 255	0 to 255	RW
G8.1.0.3.2	User fault 2 G3 = Off	40290	0 to 255	0 to 255	RW
G8.1.0.3.3	User fault 3 G3 = Off	40291	0 to 255	0 to 255	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G8.1.1	Relay 1 source select $=$ Run	40251	Always OFF	00	RW
			Always ON	01	
			No faults	02	
			General fault	03	
			Start	04	
			Run	05	
			Ready	06	
			Zero speed	07	
			Set speed	08	
			Speed direction	09	
			Speed ref direction	11	
			Speed limit	13	
			Current limit	14	
			Voltage limit	15	
			Torque limit	16	
			Comparator 1	17	
			Comparator 2	18	
			Comparator 3	19	
			Acc / Dec 2	20	
			Reference 2	21	
			Stop 2	22	
			Speed limit 2	23	
			DC brake	24	
			Power PLC	28	
			Communications	29	
			Crane brake	32	
			Warnings	34	
			Copy digital input 1	35	
			Copy digital input 2	36	
			Copy digital input 3	37	
			Copy digital input 4	38	
			Copy digital input 5	39	
			Copy digital input 6	40	
			Copy digital input 7	44	
			Copy digital input 8	45	
			Copy digital input 9	46	
			Copy digital input 10	47	
			Copy digital input 11	48	
				49	
			Copy digital input 13	50	
			Copy digital input 14	51	
			User's fault group 1	52	
			User's fault group 2	53	
				54	
			Start/Stop delay	56	
			Copy digital input 15	57	
			Copy digital input 16	58	
G8.1.2	Relay 1 ON delay $=0.0 \mathrm{~s}$	40252	0.0 to 999.0 s	0 to 9990	RW
G8.1.3	Relay 1 OFF delay $=0.0 \mathrm{~s}$	40253	0.0 to 999.0 s	0 to 9990	RW
G8.1.4	Relay 1 inversion = No	40254	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	RW
G8.1.5	Relay 2 source select = Always OFF	40255	See 8.1.1	See 8.1.1	RW
G8.1.6	Relay 2 ON delay $=0.0 \mathrm{~s}$	40256	0.0 to 999.0 s	0 to 9990	RW
G8.1.7	Relay 2 OFF delay $=0.0 \mathrm{~s}$	40257	0.0 to 999.0 s	0 to 9990	RW
G8.1.8	Relay 2 inversion = No	40258	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.9	Relay 3 source select $=$ Always OFF	40259	See 8.1.1	See 8.1.1	RW
G8.1.10	Relay 3 ON delay $=0.0 \mathrm{~s}$	40260	0.0 to 999.0 s	0 to 9990	RW
G8.1.11	Relay 3 OFF delay $=0.0 \mathrm{~s}$	40261	0.0 to 999.0 s	0 to 9990	RW
G8.1.12	Relay 3 inversion $=$ No	40262	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.13	Relay 4 src select $=$ Always OFF	40263	See 8.1.1	See 8.1.1	RW
G8.1.14	Relay 4 ON delay $=0.0 \mathrm{~s}$	40264	0.0 to 999.0 s	0 to 9990	RW
G8.1.15	Relay 4 OFF delay $=0.0 \mathrm{~s}$	40265	0.0 to 999.0 s	0 to 9990	RW
G8.1.16	Relay 4 inversion $=$ No	40266	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G8.1.17	Relay 5 src select $=$ Always OFF	40267	See 8.1.1	See 8.1.1	RW
G8.1.18	Relay 5 ON delay $=0.0 \mathrm{~s}$	40268	0.0 to 999.0 s	0 to 9990	RW
G8.1.19	Relay 5 OFF delay $=0.0 \mathrm{~s}$	40269	0.0 to 999.0 s	0 to 9990	RW
G8.1.20	Relay 5 inversion $=$ No	40270	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.21	Relay 6 source select = Always OFF	40271	See 8.1.1	See 8.1.1	RW
G8.1.22	Relay 6 ON delay $=0.0 \mathrm{~s}$	40272	0.0 to 999.0 s	0 to 9990	RW
G8.1.23	Relay 6 OFF delay $=0.0 \mathrm{~s}$	40273	0.0 to 999.0 s	0 to 9990	RW
G8.1.24	Relay 6 inversion $=$ No	40274	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.25	Relay 7 source select = Always OFF	40275	See 8.1.1	See 8.1.1	RW
G8.1.26	Relay 7 ON delay $=0.0 \mathrm{~s}$	40276	0.0 to 999.0 s	0 to 9990	RW
G8.1.27	Relay 7 OFF delay $=0.0 \mathrm{~s}$	40277	0.0 to 999.0 s	0 to 9990	RW
G8.1.28	Relay 7 inversion $=$ No	40278	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.29	Relay 8 src select $=$ Always OFF	40279	See 8.1.1	See 8.1.1	RW
G8.1.30	Relay 8 ON delay $=0.0 \mathrm{~s}$	40280	0.0 to 999.0 s	0 to 9990	RW
G8.1.31	Relay 8 OFF delay $=0.0 \mathrm{~s}$	40281	0.0 to 999.0 s	0 to 9990	RW
G8.1.32	Relay 8 inversion $=$ No	40282	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.33	Relay 9 src select $=$ Always OFF	42581	See 8.1.1	See 8.1.1	RW
G8.1.34	Relay 9 ON delay $=0.0 \mathrm{~s}$	42582	0.0 to 999.0 s	0 to 9990	RW
G8.1.35	Relay 9 OFF delay $=0.0 \mathrm{~s}$	42583	0.0 to 999.0 s	0 to 9990	RW
G8.1.36	Relay 9 inversion = No	42584	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.37	Relay 10 src select = Always OFF	42585	See 8.1.1	See 8.1.1	RW
G8.1.38	Relay 10 ON delay $=0.0 \mathrm{~s}$	42586	0.0 to 999.0 s	0 to 9990	RW
G8.1.39	Relay 10 OFF delay $=0.0 \mathrm{~s}$	42587	0.0 to 999.0 s	0 to 9990	RW
G8.1.40	Relay 10 inversion = No	42588	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.41	Relay 11 src select = Always OFF	42589	See 8.1.1	See 8.1.1	RW
G8.1.42	Relay 11 ON delay $=0.0 \mathrm{~s}$	42590	0.0 to 999.0 s	0 to 9990	RW
G8.1.43	Relay 11 OFF delay $=0.0 \mathrm{~s}$	42591	0.0 to 999.0 s	0 to 9990	RW
G8.1.44	Relay 11 inversion = No	42592	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.45	Relay 12 src select = Always OFF	42593	See 8.1.1	See 8.1.1	RW
G8.1.46	Relay 12 ON delay $=0.0 \mathrm{~s}$	42594	0.0 to 999.0 s	0 to 9990	RW
G8.1.47	Relay 12 OFF delay $=0.0 \mathrm{~s}$	42595	0.0 to 999.0 s	0 to 9990	RW
G8.1.48	Relay 12 inversion = No	42596	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.1.49	Relay 13 src select $=$ Always OFF	42597	See 8.1.1	See 8.1.1	RW
G8.1.50	Relay 13 ON delay $=0.0 \mathrm{~s}$	42598	0.0 to 999.0 s	0 to 9990	RW
G8.1.51	Relay 13 OFF delay $=0.0 \mathrm{~s}$	42599	0.0 to 999.0 s	0 to 9990	RW
G8.1.52	Relay 13 inversion = No	42600	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	RW
G8.1.53	Speed for crane brake $=0.00 \%$	40300	0.00 to 100.00\%	0 to 10000	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G8.2.1	AO1 source selection = Motor speed	40301	None	00	RW
			Motor speed	01	
			Motor current	02	
			Motor voltage	03	
			Motor power	04	
			Motor torque	05	
			Motor cos phi	06	
			Motor temperature	07	
			Motor frequency	08	
			Input voltage	09	
			Bus voltage	10	
			Drive temperature	11	
			Speed reference	12	
			PID reference	14	
			PID feedback	15	
			PID error	16	
			Analog Input 1	17	
			Analog Input 2	18	
			Analog Input 3	19	
			Max scale	21	
			Absolute speed	22	
			Absolute torque	23	
				24	
			PID output	25	
			Encoder speed	26	
			PowerPLC	28	
			Analog Input 4	29	
			Analog Input 5	30	
			Analog Input 6	31	
			Analog Input 7	32	
G8.2.2	A01 format $=4 . .20 \mathrm{~mA}$	40302	0-10V	0	RW
			$\pm 10 \mathrm{~V}$	1	
			4-20mA	3	
			$\pm 20 \mathrm{~mA}$	4	
G8.2.3	A01 low level $=0$ \%	40304	-250 to 250\%	-25000 to 25000	RW
G8.2.4	A01 high level $=100 \%$	40305	-250 to 250\%	-25000 to 25000	RW
G8.2.5	A01 filter $=$ Off	40306	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 20.0 \text { s } \end{gathered}$	0 to 200	RW
G8.3.0	Enable Pulse Mode = No	40327	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G8.3.1	AO2 source selection = Motor current	40311	See G8.2.1	See G8.2.1	RW
G8.3.2	AO2 format $=4 . .20 \mathrm{~mA}$	40312	0-10V	0	RW
			$\pm 10 \mathrm{~V}$	1	
			$0-20 \mathrm{~mA}$	2	
			4-20mA	3	
			$\pm 20 \mathrm{~mA}$	4	
G8.3.3	AO2 low level $=0 \%$	40314	-250 to 250\%	-25000 to 25000	RW
G8.3.4	AO2 high level $=100 \%$	40315	-250 to 250\%	-25000 to 25000	RW
G8.3.5	AO2 filter = Off	40316	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 20.0 \mathrm{~s} \end{gathered}$	0 to 200	RW
G8.3.6	Max pulse number $=100$	40318	0 to 32000	0 to 32000	RW
G8.3.7	Pulse duty = 50%	40319	20 to 65	20 to 65	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G9.1.1	Comp 1 source sel = None	40341	None	00	RW
			Motor speed	01	
			Motor current	02	
			Motor voltage	03	
			Motor power	04	
			Motor torque	05	
			Motor cos phi	06	
			Motor temperature	07	
			Motor frequency	08	
			Input voltage	09	
			Bus voltage	10	
			Drive temperature	11	
			Speed reference	12	
			PID reference	14	
			PID feedback	15	
			PID error	16	
			Analog Input 1	17	
			Analog Input 2	18	
			Analog Input 3	19	
			Analog Input 1+2	20	
			Absolute speed	22	
			Absolute torque	24	
			Encoder speed	25	
			PID output	27	
			Max scale	28	
			Analog Input 4	29	
			Analog Input 5	30	
			Analog Input 6	31	
			Analog Input 7	32	
G9.1.2	Comp 1 type = Normal	40342	Normal Window	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G9.1.3	Comp 1 ON level = 100%	40343	-250 to 250\%	-25000 to 25000	RW
G9.1.4	Comp 1 OFF level $=0$ \%	40344	-250 to 250\%	-25000 to 25000	RW
G9.1.3	Comp 1 window limit $2=100 \%$	40345	-250 to 250\%	-25000 to 25000	RW
G9.1.4	Comp 1 window limit $1=0 \%$	40346	-250 to 250\%	-25000 to 25000	RW
G9.1.5	Comp 10 ON delay $=0.0 \mathrm{~s}$	40347	0.0 to 999.0s	0 to 9990	RW
G9.1.6	Comp 1 OFF delay $=0.0 \mathrm{~s}$	40348	0.0 to 999.0s	0 to 9990	RW
G9.1.7	Comp 1 output function = Not used	40349	Not used	00	RW
			Start / Stop	01	
			Stop 1	02	
			Stop 2	03	
			Reset	04	
			Start + Inch 1	05	
			Start + Inch 2	06	
			Start + Inch 3	07	
			Invert speed	08	
			Acc / Dec 2	09	
			Reference 2	10	
			Speed limit 2	11	
			Fault	12	
G9.2.1	Comp 2 source sel = None	40361	See G9.1.1	See G9.1.1	RW
G9.2.2	Comp 2 type = Normal	40362	Normal Window	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G9.2.3	Comp 2 ON level = 100 \%	40363	-250 to 250\%	-25000 to 25000	RW
G9.2.4	Comp 2 OFF level $=0$ \%	40364	-250 to 250\%	-25000 to 25000	RW
G9.2.3	Comp 2 window limit $2=100 \%$	40365	-250 to 250\%	-25000 to 25000	RW
G9.2.4	Comp 2 window limit $1=0 \%$	40366	-250 to 250\%	-25000 to 25000	RW
G9.2.5	Comp 2 ON delay $=0.0 \mathrm{~s}$	40367	0.0 to 999.0s	0 to 9990	RW
G9.2.6	Comp 2 OFF delay $=0.0 \mathrm{~s}$	40368	0.0 to 999.0s	0 to 9990	RW
G9.2.7	Comp 2 output function $=$ Not used	40369	See G9.1.7	See G9.1.7	RW
G9.3.1	Comp 3 source sel $=$ None	40381	See G9.1.1	See G9.1.1	RW
G9.3.2	Comp 3 type = Normal	40382	Normal Window	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G9.3.3	Comp 3 ON level = 100 \%	40383	-250 to 250\%	-25000 to 25000	RW
G9.3.4	Comp 3 OFF level $=0$ \%	40384	-250 to 250\%	-25000 to 25000	RW
G9.3.3	Comp 3 window limit $2=100 \%$	40385	-250 to 250\%	-25000 to 25000	RW
G9.3.4	Comp 3 window limit $1=0 \%$	40386	-250 to 250\%	-25000 to 25000	RW
G9.3.5	Comp 3 ON delay $=0.0 \mathrm{~s}$	40387	0.0 to 999.0 s	0 to 9990	RW
G9.3.6	Comp 3 OFF delay $=0.0 \mathrm{~s}$	40388	0.0 to 999.0 s	0 to 9990	RW
G9.3.7	Comp 3 output function $=$ Not use	40389	See G9.1.7	See G9.1.7	RW
G10.1.1	Minimum limit $1=-100.00 \%$	40401	-250.00 to G10.1.2	-25000 to G10.1.2	RW
G10.1.2	Maximum limit $1=100.00 \%$	40402	G10.1.1 to 250.00	G10.1.1 to 25000	RW
G10.1.3	Minimum limit 2 $=-100.00 \%$	40403	-250.00 to G10.1.4	-25000 to G10.1.4	RW
G10.1.4	Maximum limit $2=100.00 \%$	40404	G10.1.3 to 250.00	G10.1.3 to 25000	RW
G10.1.5	Maximum lim timeout $=$ Off	40431	$\begin{gathered} 0.1 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=60.1 \end{gathered}$	1 to 601	RW
G10.1.6	Minimum lim timeout $=$ Off	40450	$\begin{gathered} 0.1 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=60.1 \end{gathered}$	1 to 601	RW
G10.1.7	Invert speed = No	40411	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G10.2.1	Current limit $=1.2 \mathrm{ln} \mathrm{A}$	40405	$\begin{aligned} & 0.2 \text { to } 1.50 \mathrm{ln} \\ & \text { Off }=15001 \end{aligned}$	2500 to 15001	RW
G10.2.2	I limit timeout $=$ Off	40406	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	0 to 610	RW
G10.2.3	Current limit $2=1.2 \mathrm{ln} \mathrm{A}$	40407	$\begin{aligned} & 0.2 \text { to } 1.50 \mathrm{ln} \\ & \text { Off }=15001 \end{aligned}$	2500 to 15001	RW
G10.2.4	\| limit 2 timeout = Off	40420	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	0 to 610	RW
G10.2.5	I limit 2 switch speed $=$ Off	40408	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250 \% \end{gathered}$	0 to 25000	RW
G10.2.6	Torque limit $=150.0$ \%	40409	0.0 to 250.0 \%	0a 25000	RW
G10.2.7	Torque limit timeout $=$ Off	40410	$\begin{aligned} & 0 \text { to 60s } \\ & \text { Off }=61 \\ & \hline \end{aligned}$	0 to 610	RW
G10.2.8	Torque limit $2=150.0 \%$	40421	0.0 to 250.00 \%	0 to 25000	RW
G10.2.9	Torque lim 2 timeout $=$ Off	40422	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \end{aligned}$	0 to 610	RW
G10.2.10	Torque I 2 swt speed $=$ Off	40423	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 250.00 \% \end{gathered}$	0 to 25000	RW
G10.2.11	Regeneration I limit = Off	40417	$\begin{gathered} \text { Off }=3999 \\ 40.1 \% \text { to } 150.00 \% \cdot \ln \mathrm{~A} \\ \text { (equipment) } \end{gathered}$	3999 to 15000	RW
G10.2.12	I limit Regen Time = Off	40418	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \mathrm{Off}=61 \end{aligned}$	0 to 610	RW
G10.2.13	Reg torque limit = 150.0\%	40413	0.0 to 250.0 \%	0 to 25000	RW
G10.2.14	Reg torque limit time $=$ Off	40419	$\begin{aligned} & 0 \text { to } 60 \mathrm{~s} \\ & \text { Off }=61 \mathrm{~s} \end{aligned}$	0 to 610	RW
G10.2.15	Disable limit I/T = No	40412	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G11.1.1	Supply under voltage $=0.875 \mathrm{Vn}$	40434	400V: 0.75 Vn to 0.9 Vn $440 \mathrm{~V}: 0.75 \mathrm{Vn}$ to 0.9 Vn $480 \mathrm{~V}: 0.75 \mathrm{Vn}$ to 0.9 Vn $690 \mathrm{~V}: 0.75 \mathrm{Vn}$ to 0.9 Vn	-	RW
G11.1.2	Under voltage timeout $=5.0 \mathrm{~s}$	40435	$\begin{gathered} 0.0 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=60.1 \mathrm{~s} \end{gathered}$	0 to 601	RW
G11.1.3	Supply over voltage $=1.075 \mathrm{Vn}$	40436	$400 \mathrm{~V}: 1.05 \mathrm{Vn}$ to 1.15 Vn $440 \mathrm{~V}: 1.05 \mathrm{Vn}$ to 1.15 V n $480 \mathrm{~V}: 1.05 \mathrm{Vn}$ to 1.15 Vn $690 \mathrm{~V}: 1.05 \mathrm{Vn}$ to 1.15 Vn	-	RW
G11.1.4	Over voltage timeout $=5.0 \mathrm{~s}$	40437	$\begin{aligned} & 0.0 \text { to } 60.0 \mathrm{~s} \\ & \text { Off }=60.1 \mathrm{~s} \end{aligned}$	0 to 601	RW
G11.1.5	Low voltage behavior = Faults	40439	No faults Faults Stop Dip voltage recover	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	RW
G11.1.6	LVRT input threshold = 25 \%	43789	15 to 50 \%	15 to 50	RW
G11.1.7	LVRT output threshold $=5 \%$	43790	1 to 15%	1 to 15	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G11.2.1	Stop timeout $=$ Off	40432	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 999 \text { s } \end{gathered}$	0 to 9990	RW
G11.2.2	Ground current limit $=20$ \%	40433	$\begin{gathered} \text { Off }=0 \\ 0 \text { to } 30 \% \text { In } \end{gathered}$	0 to 3000	RW
G11.2.3	I out asym trip delay $=5.0 \mathrm{~s}$	40451	$\begin{gathered} 0.0 \text { to } 10.0 \mathrm{~s}, \\ \text { Off }=10.1 \end{gathered}$	0 to 101	RW
G11.2.4	V asym out trip delay $=5.0 \mathrm{~s}$	40438	$\begin{gathered} 0.0 \text { to } 10.0 \mathrm{~s} \\ \text { Off }=10.1 \end{gathered}$	0 to 101	RW
G11.2.5	PT100 motor fault $=$ Off ${ }^{\circ} \mathrm{C}$	40440	$\begin{gathered} \text { Off }=-21 \\ -20 \text { to } 180^{\circ} \mathrm{C} \end{gathered}$	69 to 180	RW
G11.2.6	PT100 fault timeout $=30 \mathrm{~s}$	40459	0 to 3000s	0 to 3000	RW
G11.2.7	Fault with no load $=$ No	40454	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G11.2.8	Pump overload level $=20.0 \mathrm{~A}$	40441	0.0 to 3000 A	0 to 30000	RW
G11.2.9	Overload filter $=$ Off	40442	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 20.0 \mathrm{~s} \end{gathered}$	0 to 200	RW
G11.2.10	Overload delay $=60$	40443	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 480.0 \mathrm{~s} \end{gathered}$	0 to 4800	RW
G11.2.11	Pump underload enable $=$ No	40444	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G11.2.12	Underload current $=1.0 \mathrm{ln} \mathrm{A}$	40445	0.2 ln to 1.5ln	2000 to 15000	RW
G11.2.13	Underload speed $=100.0$ \%	40446	0.0 to 250.0\%	0 to 25000	RW
G11.2.14	Underload flt dly $=10.0 \mathrm{~s}$	40447	0.0 to 999.9 s	0 to 9999	RW
G11.2.15	Desync. Threshold $=40.0$ \%	40457	0.0 to 100.0 \%	0 to 10000	RW
G11.2.16	PMSM Desync. Time $=0.10 \mathrm{~s}$	40458	$\begin{gathered} 0.00 \text { to } 5.00 \mathrm{~s} \\ \text { Off }=5.01 \\ \hline \end{gathered}$	1 to 501	RW
G12.1	Enable autoreset $=$ No	40461	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G12.2	Retries max number $=1$	40462	1 to 5	1 to 5	RW
G12.3	Autoreset delay $=5 \mathrm{~s}$	40463	5 to 120s	5 to 120	RW
G12.4	Counter reset time $=15 \mathrm{~min}$	40464	1 to 60min	1 to 60	RW
G12.5	Autoreset fault $1=0 \mathrm{ff}$	40465	0 to 65535	0 to 65535	RW
G12.6	Autoreset fault $2=0$ ff	40466	0 to 65535	0 to 65535	RW
G12.7	Autoreset fault $3=0 \mathrm{ff}$	40467	0 to 65535	0 to 65535	RW
G12.8	Autoreset fault $4=0 \mathrm{ff}$	40468	0 to 65535	0 to 65535	RW
G13.1	Fault Register $1=0$	40481	0 to 1024	0 to 1024	RO
G13.1b	Date $=01 / 01 / 200000: 00$	41531	01/01/2000 00:00 to 31/12/2127 23:59	0 to 65535	RO
G13.2	Fault Register $2=0$	40482	0 to 1024	0 to 1024	RO
G13.2b	Date $=01 / 01 / 200000: 00$	41533	$\begin{gathered} \text { 01/01/2000 00:00 to } \\ 31 / 12 / 2127 \text { 23:59 } \end{gathered}$	0 to 65535	RO
G13.3	Fault Register $3=0$	40483	0 to 1024	0 to 1024	RO
G13.3b	Date $=01 / 01 / 200000: 00$	41535	$\begin{gathered} \text { 01/01/2000 00:00 to } \\ 31 / 12 / 2127 \text { 23:59 } \end{gathered}$	0 to 65535	RO
G13.4	Fault Register $4=0$	40484	0 to 1024	0 to 1024	RO
G13.4b	Date $=01 / 01 / 2000$ 00:00	41537	$\begin{gathered} \text { 01/01/2000 00:00 to } \\ 31 / 12 / 2127 \text { 23:59 } \\ \hline \end{gathered}$	0 to 65535	RO
G13.5	Fault Register $5=0$	40485	0 to 1024	0 to 1024	RO
G13.5b	Date $=01 / 01 / 2000$ 00:00	41539	$\begin{gathered} \text { 01/01/2000 00:00 to } \\ \text { 31/12/2127 23:59 } \\ \hline \end{gathered}$	0 to 65535	RO
G13.6	Fault Register $6=0$	40486	0 to 1024	0 to 1024	RO
G13.6b	Date $=01 / 01 / 200000: 00$	41541	01/01/2000 00:00 to 31/12/2127 23:59	0 to 65535	RO
G13.7	Erase fault history $=$ No	40487	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G14.1	Multi-reference $1=10.00 \%$	40501	-250.00 to 250.00\%	-25000 to 25000	RW
G14.2	Multi-reference $2=20.00 \%$	40502	-250.00 to 250.00\%	-25000 to 25000	RW
G14.3	Multi-reference $3=30.00 \%$	40503	-250.00 to 250.00%	-25000 to 25000	RW
G14.4	Multi-reference $4=40.00 \%$	40504	-250.00 to 250.00\%	-25000 to 25000	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G14.5	Multi-reference $5=50.00 \%$	40505	-250.00 to 250.00\%	-25000 to 25000	RW
G14.6	Multi-reference 6 = 60.00%	40506	-250.00 to 250.00\%	-25000 to 25000	RW
G14.7	Multi-reference $7=70.00 \%$	40507	-250.00 to 250.00\%	-25000 to 25000	RW
G15.1	Inch speed $1=0.00 \%$	40521	-250.00 to 250.00\%	-25000 to 25000	RW
G15.2	Inch speed $2=0.00 \%$	40522	-250.00 to 250.00\%	-25000 to 25000	RW
G15.3	Inch speed $3=0.00 \%$	40523	-250.00 to 250.00\%	-25000 to 25000	RW
G16.1	Skip frequency $1=0.00 \%$	40541	-250.00 to 250.00%	-25000 to 25000	RW
G16.2	Skip bandwidth 1 = Off	40542	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 20.00 \text { \% } \end{gathered}$	0 to 2000	RW
G16.3	Skip frequency $2=0.00 \%$	40543	-250.00 \% to 250.00 \%	-25000 to 25000	RW
G16.4	Skip bandwidth 2 = Off	40544	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 20.00 \text { \% } \end{gathered}$	0 to 2000	RW
G16.5	Skip frequency $3=0.00 \%$	40545	-250.00 \% to 250.00 \%	-25000 to 25000	RW
G16.6	Skip bandwidth 3 = Off	40546	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 20.00 \% \end{gathered}$	0 to 2000	RW
G16.7	Skip frequency $4=0.00 \%$	40547	-250.00 \% to 250.00 \%	-25000 to 25000	RW
G16.8	Skip bandwidth 4 = Off	40548	$\begin{gathered} \text { Off }=0 \\ 0.1 \text { to } 20.00 \% \end{gathered}$	0 to 2000	RW
G17.1	DC brake time = Off	40561	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 99.0 \text { s } \end{gathered}$	0 to 990	RW
G17.2	DC brake current level $=0 \%$	40562	0 to 100\%	0 to 10000	RW
G17.3	DC break on delay = Off	40563	$\begin{gathered} \text { Off }=0.0 \\ 0.0 \text { to } 99.0 \mathrm{~s} \end{gathered}$	0 to 990	RW
G17.4	Heating current $=$ Off	40564	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 30 \% \end{gathered}$	0 to 3000	RW
G17.5	Dynamic brake $=$ No	40565	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G19.1.1	Control type = Asynchronous	40601	Asynchronous Synchronous	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$	RW
G19.1.1a	Asynchronous control $=$ V/Hz	40493	V/Hz Vectorial	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G19.1.1a. 2	Vectorial control = PMC Open loop speed	40602	PMC Open loop speed PMC Close loop speed PMC Close loop torque PMC Open loop torque AVC Close loop speed AVC Close loop torque AVC Open loop speed AVC Open loop torque	$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	RW
G19.1.1b	Synchronous control $=$ PMSM	40494	PMSM Sync Excited	$\begin{gathered} 0 \\ 13 \end{gathered}$	RW
G19.1.1b. 2	Perm Mag Sync Mot $=$ V/Hz	40608	V/Hz F.Oriented Open Loop F.Oriented Closed Loop HEPOL	$\begin{gathered} 9 \\ 10 \\ 11 \\ 12 \end{gathered}$	RW
G19.1.3	PID Vout = No	40604	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G19.1.6	Auto Tuning $=$ No	43575	No Static Dynamic	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$	RW
G19.1.7	Overmodulation $=0 \mathrm{ff}$	40607	$\begin{gathered} \text { Off }=0.00 \\ 0.01 \text { to } 100.00 \% \end{gathered}$	0 to 10000	RW
G19.1.8	Pewave $=$ Yes	40609	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G19.1.9	Switching frequency $=4000 \mathrm{~Hz}$	40618	4000 to 8000 Hz	4000 to 8000	RW
G19.2.1	Minimum flux level $=100 \%$	40611	40 to 130\%	4000 to 13000	RW
G19.2.2	Boost voltage $=0.0 \%$	40612	0.0 to 10.0\%	0 to 1000	RW
G19.2.3	Boost current $=0.0 \%$	40610	0.0 to 100.0\%	0 to 10000	RW
G19.2.4	Slip compensation $=$ No	40613	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G19.2.5	Current limit factor $=0.0$ \%	40614	0.0 to 20.0\%	0 to 2000	RW
G19.2.6	Initial frequency $=0.0 \%$	40615	0.0 to 100.0\%	0 to 10000	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G19.2.7	Damping $=2$ \%	40616	0 to 10\%	0 to 1000	RW
G19.2.8	Reg bus voltage $=$	40617	$\begin{gathered} \text { Para VIN }=400 \mathrm{~V} / 500 \mathrm{~V} \\ \text { Bus: } 625 \text { to } 800 \mathrm{~V} \\ \text { Para VIN }=690 \mathrm{~V} \\ \text { Bus: } 950 \text { to } 1251 \mathrm{~V} \end{gathered}$	Real value $=$ Modbus value	RW
G19.2.9	Boost Band $=100.00$ \%	40560	0.00 to 100.00 \%	0 to 10000	RW
G19.2.10	Flux control = Proportional Torque	40570	Proportional Torque Maximum Torque Per Ampere	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G19.2.11	Maximum Flux $=100$ \%	40753	100.00 to 130.00\%	10000 to 13000	RW
G19.2.12	Q Reference $=0.00 \%$	40766	-250.00 to 250.00 \%	-25000 to 25000	RW
G19.3.1	R stator $=0.1 \mathrm{mOhms}$	40621	0.1 to $6553.5 \mathrm{~m} \Omega$	1 to 65535	RW
G19.3.2	R rotor $=0.1 \mathrm{mOhms}$	40622	0.1 to $6553.5 \mathrm{~m} \Omega$	1 to 65535	RW
G19.3.3	L magnetization $=0.1 \mathrm{mH}$	40623	0.1 to 6553.5 mH	1 to 65535	RW
G19.3.3	B.E.F (kV/krpm) $=0.000$	40637	0.000 to 5.000	0 to 5000	RW
G19.3.4	L leakage stator $=0.00 \mathrm{mH}$	40624	0.00 to 655.35 mH	0 to 65535	RW
G19.3.4	L Stator D axis $=0.00 \mathrm{mH}$	40638	0.00 mH to 100.00 mH	0 to 10000	RW
G19.3.5	L leakage rotor $=0.00 \mathrm{mH}$	40625	0.00 to 655.35 mH	0 to 65535	RW
G19.3.5	L Stator Q axis $=0.00 \mathrm{mH}$	40639	0.00 mH to 100.00 mH	0 to 10000	RW
G19.3.6	Field weakening $=100.0$ \%	40626	50.00 to 130.10%	5000 to 13010	RW
G19.3.7	Temperature coef $\mathrm{R}=20.0$ \%	40627	0.0 to 50.0\%	0 to 5000	RW
G19.3.8	Flux tuning $=2.0$ \%	40628	0.0 to 10.0\%	0 to 100	RW
G19.3.9	Params online estim $=$ No	40657	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G19.4.1	Kp speed $=10.0$ \%	40631	0.0 to 100.0\%	0 to 10000	RW
G19.4.2	Ki speed $=10.0$ \%	40632	0.0 to 100.0\%	0 to 10000	RW
G19.4.3	Kp torque $=100.0$ \%	40633	0.0 to 200.0\%	0 to 20000	RW
G19.4.4	Ki torque $=10.0$ \%	40634	0.0 to 100.0\%	0 to 10000	RW
G19.4.5	$\mathrm{Kpl}=10.0$ \%	40635	0.0 to 100.0\%	0 to 10000	RW
G19.4.6	Kil $=15.0$ \%	40636	0.0 to 100.0\%	0 to 10000	RW
G19.4.7	Kp Sensorless $=50.0$ \%	40642	0.0 to 100.0\%	0 to 10000	RW
G19.4.8	Ki Sensorless = 50.0 \%	40643	0.0 to 100.0\%	0 to 10000	RW
G20.1.1	Display baudrate $=921600$ bps baud/s	40651	2400 bps baud/s 4800 bps baud/s 9600 bps baud/s 19200 bps baud/s 57600 bps baud/s 115200 bps baud/s 230400 bps baud/s 460800 bps baud/s 921600 bps baud/s	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$	RW
G20.1.2	Modbus address $=10$	40652	1 to 255	1 to 255	RW
G20.1.3	Modbus baudrate $=9600$ bps baud/s	40653	2400 bps baud/s 4800 bps baud/s 9600 bps baud/s 19200 bps baud/s 57600 bps baud/s 115200 bps baud/s 230400 bps baud/s 460800 bps baud/s 921600 bps baud/s	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & \hline \end{aligned}$	RW
G20.1.4	Modbus parity = None	40654	Odd None Even	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	RW
G20.1.5	Communication timeout $=$ Off	40655	$\begin{gathered} \text { Off }=0 \\ 1 \text { to } 600 \mathrm{~s} \end{gathered}$	0 to 600	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
$\begin{aligned} & \text { G20.6.1 } \\ & \text { to } \\ & \text { G20.6.120 } \end{aligned}$	Custom Modbus addresses 1 to 120	$\begin{gathered} 44601 \\ \text { to } \\ 44720 \end{gathered}$	0 to 65535	0 to 65535	RW
$\begin{aligned} & \text { G20.7.1 } \\ & \text { to } \\ & \text { G20.7.120 } \end{aligned}$	Values of custom Modbus registers 1 to 120	$\begin{gathered} 44801 \\ \text { to } \\ 44920 \end{gathered}$	0 to 65535	0 to 65535	RW
G21.2.1	Client TCP timeout $=1000 \mathrm{~s}$	40741	0.05 to 5000	50 to 5000	RW
G21.2.2	Client TCP retries $=1$	40742	0 to 4	0 to 4	RW
G23.2.1	10 digital A status $=0 \mathrm{Of}$	41135	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RO
G23.2.2	1 O digital A test $=$ No	41136	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G23.2.3	IO digital B status = Off	41137	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RO
G23.2.4	1 O digital B test $=$ No	41138	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G23.3.1	Profinet board status $=0$ ff	41021	$\begin{aligned} & \text { Off } \\ & \text { On } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RO
G23.3.2	Profinet board test $=$ No	41022	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G23.3.3	Profinet Com Error $=$ Fault	41023	Off Warning Fault	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$	RW
G23.4	Remove All Exp Boards $=$ No	40880	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G24.1.1	Vdc ref mode = Auto	41331	Fixed Auto	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G24.1.2	V dc ref $=0 \mathrm{~V}$	41332	500 Vdc to 825 Vdc 650 Vdc to 900 Vdc 850 Vdc to 1150 Vdc	$\begin{gathered} 500 \text { to } 825 \\ 650 \text { to } 900 \\ 850 \text { to } 1150 \end{gathered}$	RW
G24.1.3	Cos phi $=1.00$	41333	0.90 to 1.00	90 to 100	RW
G24.1.4	Cos phi setting = Capacitive	41334	Capacitive Inductive	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G24.1.5	Delay off rect $=0 \mathrm{~s}$	41335	$\begin{aligned} & 0 \text { to } 250 \text { s } \\ & \text { Off }=251 \end{aligned}$	0 to 251	RW
G24.1.6	Eq $\operatorname{lin}=\mathrm{No}$	41336	$\begin{aligned} & \text { No } \\ & \text { Yes } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G24.1.7	Rectifier frequency $=2800 \mathrm{~Hz}$	41354	$\begin{aligned} & 2000 \mathrm{~Hz}=2000 \\ & 2100 \mathrm{~Hz}=2100 \\ & 2200 \mathrm{~Hz}=2200 \\ & 2300 \mathrm{~Hz}=2300 \\ & 2400 \mathrm{~Hz}=2400 \\ & 2500 \mathrm{~Hz}=2500 \\ & 2600 \mathrm{~Hz}=2600 \\ & 2700 \mathrm{~Hz}=2700 \\ & 2800 \mathrm{~Hz}=2800 \\ & 2900 \mathrm{~Hz}=2900 \\ & 3000 \mathrm{~Hz}=3000 \end{aligned}$	2000 to 3000	RW
G24.1.8	Delay start inverter $=$ Off	41355	$\begin{gathered} \text { Off }=0.0 \\ 0.1 \text { to } 25.0 \text { s } \end{gathered}$	0 to 250	RW
G24.2.1	Kp PLL $=10.0 \%$	41337	0.0 to 100.0 \%	0 to 1000	RW
G24.2.2	Ki PLL $=15.0 \%$	41338	0.0 to 100.0 \%	0 to 1000	RW
G24.2.3	$\mathrm{Kp} \mid \mathrm{Vdc}=10.0 \%$	41339	0.0 to 100.0 \%	0 to 1000	RW
G24.2.4	Ki I Vdc $=3.5 \%$	41340	0.0 to 100.0 \%	0 to 1000	RW
G24.2.5	$\mathrm{KpI}=10.0 \%$	41341	0.0 to 100.0 \%	0 to 1000	RW

Parameter	Screen	Address	Range	Modbus Range	Access ${ }^{[1]}$
G24.2.6	$\mathrm{KiI}=10.0 \%$	41342	0.0 to 100.0\%	0 to 1000	RW
G24.3.1	l lim rect $=1.5 \mathrm{x} \ln$	41343	0 to 65535	0 to 65535	RW
G24.3.2	l lim rect delay $=$ Off s	41344	$\begin{gathered} 0.0 \text { to } 60.0 \mathrm{~s} \\ \text { Off } \end{gathered}$	0 to 601	RW
G24.3.3	I imbalance = 30.0\%	41345	$\begin{gathered} 00.0 \% \text { to } 50.0 \% \\ \text { Off }=50.1 \end{gathered}$	0 to 501	RW
G24.3.4	1 ground = 30.0\%	41346	$\begin{gathered} 00.0 \% \text { to } 50.0 \% \\ \text { Off }=50.1 \end{gathered}$	0 to 501	RW
G24.4.1	LCL filter mode $=$ RUN	41347	$\begin{aligned} & \text { RUN } \\ & \text { POWER } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G24.4.2	LCL filter power $=20.0 \%$	41348	0.0\% to 100.0\%	0 to 1000	RW
G24.4.3	LCL filter fback dlay $=60.1 \mathrm{~s}$	41349	$\begin{gathered} 0.0 \text { to } 60.0 \mathrm{~s} \\ \text { Off }=60.1 \mathrm{~s} \end{gathered}$	0 to 601	RW
G24.5.1	Auto max retries $=0$ ff	41350	$\begin{gathered} \text { Off } \\ 1 \\ 2 \\ 3 \\ 4 \\ 1+1 \\ 2+1 \\ 3+1 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & \hline \end{aligned}$	RW
G24.5.2	Auto delay $=2 \mathrm{~s}$	41351	1 to 60 s	1 to 60	RW
G24.5.3	Auto reset time $=15 \mathrm{~s}$	41352	1 to 60 s	1 to 60	RW
G24.5.4	Auto fault report $=$ Yes	41353	$\begin{gathered} \text { No } \\ \text { Sí } \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	RW
G26.1	Fans mode = Run	41211	Off Auto Fixed Run	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$	RW
G26.2	Min temperature $=47^{\circ} \mathrm{C}$	41214	$35^{\circ} \mathrm{C}$ to G 26.3	35 to G26.3	RW
G26.3	Max temperature $=51^{\circ} \mathrm{C}$	41213	G26.2 to $80^{\circ} \mathrm{C}$	G26.2 to 80	RW
G26.4	Power off delay = 1 min	41214	1 to 5 min	1 to 5	RW

[1] Access: RW: Read and write. RO: Read only.

Visualization parameters

Parameter Screen	Description Current drive status.	Address				Modbus Range
				43564		0 to 255
		Modbus Value	Status	Modbus Value	Status	
		0	OFF	10	SPN	
		1	ON	11	AUT	
		2	ACL	12	BRK	
		3	RUN	14	IHEAT	
		4	DEC	16	DLY	
		5	STP	41	IS1	
		6	FLT	42	IS2	
		9	RFLT	43	153	

Warning messages			43565			1 to 51	
Modbus Value	Warning						
0	NO WRN	11	OVV	22	PIE	36	DE_A
1	MOL	12	UNV	23	DIE	37	EPB
3	MOC	13	SLMAX	24	FTE	44	DE_B
4	DOC	14	CWR	25	TPR	45	EVCOMM
5	ILT	15	SLMIN	26	MCC	46	AE_A
6	TLT	16	RTL	27	FAV	47	$A E _B$
7	VLT	17	MVR	28	PLL	48	PNE
8	ACO	18	RIL	29	SWM	49	EIPE
9	AVO	19	LVRT	30	DWA	50	NOSD
10	AVI	20	ACI	31	LCL	51	SDCRP

Consult warning messages description in section "STATUS \& WARNING MESSAGES"
Fault messages

Modbus Value	Fault message	Modbus Value	$\begin{aligned} & \text { Fault } \\ & \text { message } \end{aligned}$	Modbus Value	$\begin{aligned} & \text { Fault } \\ & \text { message } \end{aligned}$	Modbus Value	Fault message
0	F0	39	F39	83	F83	161	R1
1	F1	40	F40	84	F84	162	R2
2	F2	41	F41	85	F85	163	R3
3	F3	42	F42	87	F87	164	R4
4	F4	43	F43	89	F89	165	R5
5	F5	44	F44	93	F93	166	R6
6	F6	45	F45	94	F94	167	R7
7	F7	46	F46	95	F95	168	R8
8	F8	47	F47	96	F96	169	R9
10	F10	48	F48	99	F99	170	R10
11	F11	49	F49	100	F100	171	R11
12	F12	50	F50	101	F101	172	R12
13	F13	53	F53	102	F102	173	R13
14	F14	54	F54	103	F103	174	R14
15	F15	55	F55	104	F104	175	R15
16	F16	56	F56	105	F105	176	R16
17	F17	57	F57	106	F106	177	R17
18	F18	58	F58	107	F107	178	R18
19	F19	59	F59	108	F108	179	R19
20	F20	60	F60	109	F109	180	R20
21	F21	61	F61	110	F110	181	R21
22	F22	62	F62	111	F111	182	R22
23	F23	63	F63	112	F112	183	R23
24	F24	64	F64	113	F113	184	R24
25	F25	68	F68	114	F114	185	R25
26	F26	69	F69	115	F115	186	R26
27	F27	70	F70	116	F116	189	R29
28	F28	71	F71	117	F117	194	R34
31	F31	72	F72	118	F118	197	R37
32	F32	73	F73	119	F119		
33	F33	74	F74	120	F120		
34	F34	75	F75	121	F121		
35	F35	76	F76	122	F122		
36	F36	77	F77	123	F123		
37	F37	78	F78	124	F124		
38	F38	79	F79	125	F125		

Consult fault messages description in section "FAULT MESSAGES. DESCRIPTIONS AND ACTIONS

STATUS LINE	OFF	0.0A	$+0.0 \%$	Motor output current. (Corresponds with SV1.6)	42007
STATUS LINE	OFF	0.0 A	$+0.0 \%$	Motor output speed (in percentage). (Corresponds with SV1.3)	42003

Parameter	Screen	Description	Address	Modbus Range
SV1.1	Speed reference $=0.0 \%$	Shows the present reference value of speed which is applied to the motor.	42001	Real Value = (Modbus Value / 100)
SV1.2	Torque reference $=0.0$ \%	Shows the present reference value of torque which is applied to the motor.	42002	Real Value = (Modbus Value / 100)
SV1.3	Motor speed (\%) = 0.0 \%	Shows the motor speed in percentage.	42003	Real Value = (Modbus Value / 100)
SV1.4	Motor speed (rpm) $=0 \mathrm{rpm}$	Shows the motor speed in revolutions per minute.	42004	Real Value $=$ Modbus Value
SV1.5	Motor frequency $=0.0 \mathrm{~Hz}$	Shows the frequency being applied to the motor.	42005	Real Value $=($ Modbus Value / 10)
SV1.6	Motor voltage $=0 \mathrm{~V}$	Shows the present voltage applied to the motor.	42006	Real Value = Modbus Value
SV1.7	Motor current $=0.0 \mathrm{~A}$	Shows the present current flowing to the motor.	42007	Real Value $=($ Modbus Value $/ 10)$
SV1.8	Motor torque $=0.0 \%$	Shows the present torque applied to the motor.	42008	Real Value = (Modbus Value / 100)
SV1.9	Motor phi cosine $=0.85$	Shows the motor's cos phi.	42009	Real Value = (Modbus Value / 100)
SV1.10	Motor power $=0.0 \mathrm{~kW}$	Shows the instantaneous power consumption of the motor.	42010	Real Value $=$ Modbus Value
SV1.11.1	U motor current $=0.0 \mathrm{~A}$	Shows the instantaneous current of each phase of the motor (U, V and W).	42011	Real Value $=($ Modbus Value $/ 10)$
SV1.11.2	V motor current $=0.0 \mathrm{~A}$		42012	Real Value $=($ Modbus Value / 10)
SV1.11.3	W motor current $=0.0 \mathrm{~A}$		42013	Real Value $=($ Modbus Value $/ 10)$
SV1.12.1	$\mathrm{U}-\mathrm{V}$ motor voltage $=0 \mathrm{~V}$	Shows the instantaneous voltage applied (UV, VW, UW).	42014	Real Value $=$ Modbus Value
SV1.12.2	V - W motor voltage $=0 \mathrm{~V}$		42015	Real Value = Modbus Value
SV1.12.3	$\mathrm{W}-\mathrm{U}$ motor voltage $=0 \mathrm{~V}$		42016	Real Value $=$ Modbus Value
SV1.13	PTC Status $=$ No	Shows whether the motor PTC is connected or disconnected.	42017	Real Value = Modbus Value
SV1.14	Estimat. Motor temp(\%) = 0.0 \%	Shows the estimated motor temperature.	42018	Real Value = (Modbus Value / 100)
SV1.15	Motor temperature $=0{ }^{\circ} \mathrm{C}$	Shows the motor temperature.	42019	Real Value = Modbus Value
SV2.1.1	L1-L2 supply voltage $=0 \mathrm{~V}$	Shows the input instantaneous voltage applied to the drive (L1-L2, L2-L3 and L3-L1).	42031	Real Value = Modbus Value
SV2.1.2	L2-L3 supply voltage $=0 \mathrm{~V}$		42032	Real Value = Modbus Value
SV2.1.3	L3-L1 supply voltage $=0 \mathrm{~V}$		42033	Real Value = Modbus Value
SV2.2	Input voltage average $=0 \mathrm{~V}$	Shows the average input voltage to the drive.	42034	Real Value = Modbus Value
SV2.3	DC bus voltage $=0 \mathrm{~V}$	Shows DC Link voltage of the drive.	42035	Real Value = Modbus Value
SV2.4	Input frequency $=0.0 \mathrm{~Hz}$	Shows the frequency of the drive input voltage.	42036	Real Value $=($ Modbus Value $/ 10)$
SV2.5.1	Drive temperature $=0^{\circ} \mathrm{C}$	Shows the temperature measured inside the electronics chamber of the drive.	42039	Real Value = Modbus Value
SV2.5.2	IGBT temperature $=0^{\circ} \mathrm{C}$	Shows the maximum temperature measured at the power stage.	42040	Real Value = Modbus Value
SV2.10	Relative Humidity $=0 \%$	Shows the internal relative humidity of the converter.	42050	Real Value = Modbus Value
SV3.1	Al 1 value $=0.00 \mathrm{~V}$	Shows the value of Analogue Input 1.	42061	Real Value $=($ Modbus Value $/ 1000)$
SV3.2	Al1 percentage $=100.0 \%$	Shows the value or the PID reference proportional to Analogue Input 1.	42062	Real Value $=($ Modbus Value $/ 100)$
SV3.3	Al1 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	Value of sensor 1 associated to Al1.	42063	Real Value $=($ Modbus Value $/ 10)$
SV3.4	Al 2 value $=0.00 \mathrm{~mA}$	Shows the value of the Analogue Input 2.	42064	Real Value $=($ Modbus Value $/ 1000)$
SV3.5	Al 2 percentage $=100.0 \%$	Value or the PID reference proportional to the Al 2 signal.	42065	Real Value $=($ Modbus Value $/ 100)$
SV3.6	Al 2 sensor value $=0.0 \mathrm{Bar}$	Value of sensor 2 associated to the AI2.	42066	Real Value $=($ Modbus Value $/ 10)$

Parameter	Screen	Description	Address	Modbus Range
SV3.7	$\mathrm{Al3}$ value $=0.00 \mathrm{~V}$	Value of sensor 3 associated to the Al3.	42067	Real Value $=($ Modbus Value $/ 1000)$
SV3.8	Al 3 percentage $=100.0 \%$	Value or the PID reference proportional to the Al3 signal.	42068	Real Value $=($ Modbus Value / 100)
SV3.9	Al 3 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	Value of sensor 3 associated to the Al3.	42069	Real Value $=($ Modbus Value $/ 10)$
SV3.22	A 01 value $=0.00 \mathrm{~V}$	Value of the Analogue output 1 in volts.	42070	Real Value $=($ Modbus Value $/ 1000)$
SV3.23	A01 percentage $=0.0 \%$	Value of the Analogue output 1 in percent.	42071	Real Value $=($ Modbus Value / 100)
SV3.24	AO 2 value $=0.00 \mathrm{~V}$	Value of the Analogue output 2 in volts.	42072	Real Value $=($ Modbus Value $/ 1000)$
SV3.25	AO2 percentage $=0.0 \%$	Value of the Analogue output 2 in percent.	42073	Real Value $=($ Modbus Value / 100)
SV3.26	$\mathrm{AO3}$ value $=0.00 \mathrm{~V}$	Value of the Analogue output 3 in volts.	42074	Real Value $=($ Modbus Value $/ 1000)$
SV3.27	A03 percentage $=0.0 \%$	Value of the Analogue output 3 in percent.	42075	Real Value $=($ Modbus Value / 100)
SV3.34	DI status $=000000$	Value of the digital inputs (6 bits).	42081	Real Value $=$ Modbus Value
SV3.35	Output relays status $=000$	Value of the output relays (3, bits).	42082	Real Value = Modbus Value
SV3.37	Fans $=$ Off	Shows the status of the fans (on / off).	41215	Real Value = Modbus Value
SV3.38	Pulse Input $=0.0 \mathrm{l} / \mathrm{s}$	Shows the measurement of the pulse input.	42092	Real Value $=$ Modbus Value
SV4.1	Present fault $=0$	Shows the present fault code.	42101	Real Value = Modbus Value
SV4.2	Nominal V $=500 \mathrm{~V}$	Shows the drive rated voltage.	42102	Real Value $=$ Modbus Value
SV4.3	Nominal I $=46.0 \mathrm{~A}$	Shows the drive rated current.	42103	Real Value $=($ Modbus Value $/ 10)$
SV4.4	PID setpoint $=100.0$ \%	Shows the reference value in PID mode of the equipment standard program.	42106	Real Value $=($ Modbus Value / 100)
SV4.5	PID feedback value $=100.0$ \%	Shows the feedback value in PID mode of the equipment standard program.	42107	Real Value $=($ Modbus Value / 100)
SV4.8.1	Comp status $1=0$	Shows the status of the three comparators.	42108	Real Value = Modbus Value
SV4.8.2	Comp status $2=0$		42109	Real Value = Modbus Value
SV4.8.3	Comp status $3=0$		42110	Real Value = Modbus Value
SV4.9	Prior to fault status $=$ OFF	Status of the drive before the fault.	42111	Real Value = Modbus Value
SV5.1	Speed local reference $=100.0 \%$	Shows the speed reference in local mode.	42231	Real Value = (Modbus Value / 100)
SV5.2	PID local setpoint $=100.0$ \%	Shows the PID setting in local mode.	42232	Real Value $=($ Modbus Value $/ 100)$
SV5.3	Multireference $1=10.00$ \%	Speed value assigned to Multi-reference 1.	42233	Real Value $=($ Modbus Value / 100)
SV5.4	Multireference $2=20.00 \%$	Speed value assigned to Multi-reference 2.	42234	Real Value $=($ Modbus Value / 100)
SV5.5	Multireference $3=30.00 \%$	Speed value assigned to Multi-reference 3.	42235	Real Value = (Modbus Value / 100)
SV5.6	Multireference $4=40.00$ \%	Speed value assigned to Multi-reference 4.	42236	Real Value = (Modbus Value / 100)
SV5.7	Multireference $5=50.00$ \%	Speed value assigned to Multi-reference 5.	42237	Real Value = (Modbus Value / 100)
SV5.8	Multireference $6=60.00 \%$	Speed value assigned to Multi-reference 6.	42238	Real Value = (Modbus Value / 100)
SV5.9	Multireference $7=70.00 \%$	Speed value assigned to Multi-reference 7.	42239	Real Value $=($ Modbus Value / 100)
SV5.10	Inch speed $1=0.00 \%$	Shows the fixed speed 1.	42240	Real Value = (Modbus Value / 100)
SV5.11	Inch speed $2=0.00 \%$	Shows the fixed speed 2.	42241	Real Value $=($ Modbus Value $/ 100)$
SV5.12	Inch speed $3=0.00 \%$	Shows the fixed speed 3.	42242	Real Value = (Modbus Value / 100)
SV6.1.1	Total days counter $=0$ days	Shows the total time during which the drive is running (run).	42251	Real Value $=$ Modbus Value
SV6.1.2	Total hours counter $=0 \mathrm{~h}$	Shows the total time during which the drive is running (run).	42252	Real Value = Modbus Value

Parameter	Screen	Description	Address	Modbus Range
SV6.2.1	Partial days counter $=0$ days	Shows the total time during which the drive is running (run).	42253	Real Value $=$ Modbus Value
SV6.2.2	Partial hours counter $=0 \mathrm{~h}$	Shows the partial time during which the drive is running (run).	42254	Real Value $=$ Modbus Value
SV6.3	Clear partial counter $=$ No	Allows resetting the counter of partial time for running status (run).	42255	Real Value = Modbus Value
SV6.4.1	Mot. Total En. GWh $=0$ GWh	Shows the drive total energy consumption.	42256	Real Value = Modbus Value
SV6.4.2	Mot. Total En. MWh $=0 \mathrm{MWh}$	Shows the drive total energy consumption.	42257	Real Value $=$ Modbus Value
SV6.4.3	Mot. Total En. KWh = 0 kWh	Shows the drive total energy consumption.	42258	Real Value $=$ Modbus Value
SV6.5.1	Mot. Partial En. GWh $=0$ GWh	Shows the drive partial energy consumption.	42259	Real Value $=$ Modbus Value
SV6.5.2	Mot. Partial En. MWh $=0 \mathrm{MWh}$	Shows the drive partial energy consumption.	42260	Real Value $=$ Modbus Value
SV6.5.3	Mot. Partial En. KWh = 0 kWh	Shows the drive partial energy consumption.	42261	Real Value = Modbus Value
SV6.6	Mot. Partial En. reset = No	Allows resetting the counter of partial energy.	42262	Real Value $=$ Modbus Value
SV6.7.1	Rect. Consum. En. GWh = 0 GWh	Shows the regenerative stage total energy consumption.	42263	Real Value = Modbus Value
SV6.7.2	Rect. Consum. En. MWh $=0$ MWh	Shows the regenerative stage total energy consumption.	42264	Real Value = Modbus Value
SV6.7.3	Rect. Consum. En. KWh = 0 kWh	Shows the regenerative stage total energy consumption.	42265	Real Value $=$ Modbus Value
SV6.8.1	Rect. Suppl. En. GWh = 0 GWh	Shows the regenerative stage partial energy consumption.	42266	Real Value = Modbus Value
SV6.8.2	Rect. Suppl. En. MWh = 0 MWh	Shows the regenerative stage partial energy consumption.	42267	Real Value $=$ Modbus Value
SV6.8.3	Rect. Suppl. En. KWh = 0 kWh	Shows the regenerative stage partial energy consumption.	42268	Real Value $=$ Modbus Value
SV7.1	Input power $=0.0 \mathrm{~kW}$	Shows the power input value of the rectifier.	42271	Real Value $=($ Modbus Value $/ 10)$
SV7. 2	Drive input current $\mathrm{R}=0.0 \mathrm{~A}$	Shows the instantaneous current per phase of the rectifier (U).	42272	Real Value $=($ Modbus Value $/ 10)$
SV7. 3	Drive input current $\mathrm{S}=0.0 \mathrm{~A}$	Shows the instantaneous current per phase of the rectifier (V).	42281	Real Value $=($ Modbus Value / 10)
SV7.4	Drive input current $\mathrm{T}=0.0 \mathrm{~A}$	Shows the instantaneous current per phase of the rectifier (W).	42282	Real Value $=($ Modbus Value $/ 10)$
SV7.5	Rect. Cos Phi $=0.00$	Shows the motor's cos phi or Displacement Power Factor (DPF).	42283	Real Value = (Modbus Value / 100)
SV7.6	Rect. IGBT temp. $=0^{\circ} \mathrm{C}$	Shows the IGBTs temperature.	42284	Real Value $=$ Modbus Value
SV7.7	Frequency of PLL $=0.0 \mathrm{~Hz}$	Shows the internal frequency of the PLL.	42285	Real Value $=($ Modbus Value $/ 10)$
SV7.8	THD input $=0.00 \%$	Shows the input current distortion of the rectifier.	42286	Real Value = (Modbus Value / 100)
SV7.9	L1-L2 supply voltage $=0 \mathrm{~V}$	Shows the instantaneous line voltage (L1-L2).	42287	Real Value = (Modbus Value / 100)
SV7.10	L2-L3 supply voltage $=0 \mathrm{~V}$	Shows the instantaneous line voltage (L2-L3).	42288	Real Value = Modbus Value
SV7.11	L3-L1 supply voltage $=0 \mathrm{~V}$	Shows the instantaneous line voltage (L3-L1).	42289	Real Value = Modbus Value
SV7.12	DC bus voltage $=0 \mathrm{~V}$	Shows the DC bus voltage.	42290	Real Value $=$ Modbus Value
SV8. 1	Seconds $=0$	Shows the seconds of the current time.	42431	Real Value $=$ Modbus Value
SV8. 2	Minutes $=0$	Shows the minutes of the current time.	42432	Real Value = Modbus Value
SV8.3	Hours $=0$	Shows the hours of the current time.	42433	Real Value $=$ Modbus Value
SV8.4	Day $=1$	Shows the day of the current date.	42434	Real Value $=$ Modbus Value
SV8.5	Month $=1$	Shows the month of the current date.	42435	Real Value = Modbus Value
SV8.6	Year $=2015$	Shows the year of the current date.	42436	Real Value $=$ Modbus Value

Parameter	Screen	Description	Address	Modbus Range
SV9.1.1	Speed reference $=0.0 \%$	Current speed reference value.	42451	Real Value $=($ Modbus Value $/ 100)$
SV9.1.2	Torque reference $=0.0 \%$	Current torque reference value.	42452	Real Value $=($ Modbus Value $/ 100)$
SV9.1.3	Motor speed (\%) = 0.0 \%	Shows the motor speed in percentage.	42453	Real Value $=($ Modbus Value $/ 100)$
SV9.1.4	Motor speed (rpm) $=0 \mathrm{rpm}$	Shows the motor speed in revolutions per minute.	42454	Real Value = Modbus Value
SV9.1.5	Motor frequency $=0.0 \mathrm{~Hz}$	Shows the frequency which the motor is running.	42455	Real Value $=($ Modbus Value $/ 10)$
SV9.1.6	Motor voltage $=0 \mathrm{~V}$	Shows the current voltage applied to the motor.	42456	Real Value = Modbus Value
SV9.1.7	Motor current $=0.0 \mathrm{~A}$	Shows the present current to the motor.	42457	Real Value $=($ Modbus Value $/ 10)$
SV9.1.8	Motor torque $=0.0$ \%	Shows the current torque applied to the motor.	42458	Real Value = (Modbus Value / 100)
SV9.1.9	Motor phi cosine $=0.85$	Shows the motor power factor.	42459	Real Value = (Modbus Value / 100)
SV9.1.10	Motor power $=0.0 \mathrm{~kW}$	Shows the instantaneous power consumption of the motor.	42460	Real Value = Modbus Value
SV9.1.11.1	U motor current $=0.0 \mathrm{~A}$		42461	Real Value $=($ Modbus Value / 10)
SV9.1.11.2	V motor current $=0.0 \mathrm{~A}$	Shows the instantaneous current per phase of the motor (U, V and W).	42462	Real Value $=($ Modbus Value $/ 10)$
SV9.1.11.3	W motor current $=0.0 \mathrm{~A}$		42463	Real Value $=($ Modbus Value $/ 10)$
SV9.1.12.1	$\mathrm{U}-\mathrm{V}$ motor voltage $=0 \mathrm{~V}$		42464	Real Value $=$ Modbus Value
SV9.1.12.2	V - W motor voltage $=0 \mathrm{~V}$	Shows the instantaneous line voltage (UV, VW, UW).	42465	Real Value = Modbus Value
SV9.1.12.3	W -U motor voltage $=0 \mathrm{~V}$		42466	Real Value = Modbus Value
SV9.1.13	PTC Status $=$ No	Shows whether the motor PTC is connected or not.	42467	Real Value = Modbus Value
SV9.1.14	Motor temperature(\%) = 0.0 \%	Shows the theoretical heating level of the motor.	42468	Real Value = (Modbus Value / 100)
SV9.1.15	Motor temperature $=0^{\circ} \mathrm{C}$	Shows the temperature of the motor.	42469	Real Value $=$ Modbus Value
SV9.2.1.1	L1-L2 supply volt $=0 \mathrm{~V}$		42481	Real Value = Modbus Value
SV9.2.1.2	L2-L3 supply volt $=0 \mathrm{~V}$	Shows the instantaneous input voltage (L1-L2, L2-L3, L3-L1).	42482	Real Value = Modbus Value
SV9.2.1.3	L3-L1 supply volt $=0 \mathrm{~V}$		42483	Real Value = Modbus Value
SV9.2.2	Input voltage average $=0 \mathrm{~V}$	Shows the average value of input voltages between phases.	42511	Real Value $=$ Modbus Value
SV9.2.3	DC bus voltage $=0 \mathrm{~V}$	Shows the DC bus voltage.	42500	Real Value $=$ Modbus Value
SV9.2.4	Input frequency $=0.0 \mathrm{~Hz}$	Shows the frequency of the input voltage.	42484	Real Value $=($ Modbus Value $/ 10)$
SV9.2.5	Drive temperature $=0^{\circ} \mathrm{C}$	Shows the temperature of the drive.	42487	Real Value $=$ Modbus Value
SV9.2.9	IGBT temperature $=0^{\circ} \mathrm{C}$	Shows the temperature measured at the power stage of the drive output.	42512	Real Value = Modbus Value
SV9.2.10	Relative Humidity = 0 \%	Shows the internal relative humidity of the drive.	42513	Real Value = Modbus Value
SV9.3.1	$\mathrm{Al1}$ value $=0.00 \mathrm{~V}$	Shows the average value of the Al1.	42501	Real Value $=($ Modbus Value $/ 1000)$
SV9.3.2	Al1 percentage $=100.0 \%$	Shows the speed reference or the PID proportional setting for the Al1.	42502	Real Value = (Modbus Value / 100)
SV9.3.3	Al 1 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	Value of sensor 1 associated to AI1.	42503	Real Value $=($ Modbus Value $/ 10)$
SV9.3.4	$\mathrm{Al2}$ value $=0.00 \mathrm{~mA}$	Average value of the analogue input 2.	42504	Real Value $=($ Modbus Value $/ 1000)$
SV9.3.5	Al 2 percentage $=100.0 \%$	Shows the speed reference or the PID proportional setting for the AI2.	42505	Real Value = (Modbus Value / 100)
SV9.3.6	Al 2 sensor value $=0.0 \mathrm{Bar}$	Value of sensor 1 associated to Al2.	42506	Real Value $=($ Modbus Value / 10)
SV9.3.7	Al 3 value $=0.00 \mathrm{~V}$	Average value of the analogue input 3.	42507	Real Value $=($ Modbus Value $/ 1000)$
SV9.3.8	Al 3 percentage $=100.0 \%$	Shows the speed reference or the PID proportional setting for the Al3.	42508	Real Value = (Modbus Value / 100)
SV9.3.9	Al 3 sensor value $=0.0 \mathrm{l} / \mathrm{s}$	Value of sensor 1 associated to Al3.	42509	Real Value $=($ Modbus Value $/ 10)$

Parameter	Screen	Description	Address	Modbus Range
SV9.3.22	A01 value $=0.00 \mathrm{~V}$	Value of the Analogue output 1 in volts.	42493	Real Value $=($ Modbus Value $/ 1000)$
SV9.3.23	A01 percentage $=0.0 \%$	Value of the Analogue output 1 in percent.	42494	Real Value $=($ Modbus Value / 100)
SV9.3.24	$\mathrm{AO2}$ value $=0.00 \mathrm{~V}$	Value of the Analogue output 2 in volts.	42495	Real Value $=($ Modbus Value $/ 1000)$
SV9.3.25	AO2 percentage $=0.0 \%$	Value of the Analogue output 2 in percent.	42496	Real Value $=($ Modbus Value / 100)
SV9.3.26	AO3 value $=0.00 \mathrm{~V}$	Value of the Analogue output 3 in volts.	42497	Real Value $=($ Modbus Value $/ 1000)$
SV9.3.27	AO3 percentage $=0.0 \%$	Value of the Analogue output 3 in percent.	42498	Real Value = (Modbus Value / 100)
SV9.3.34	DI status $=000000$	Shows the status of each of the digital inputs of the central control: 6,10 or 16 bits (input 1: first from the left).	42499	Real Value = Modbus Value (LSB: Entrada 1)
SV9.3.34	DI status $=00000000000$		41273	Real Value = Modbus Value (LSB: Entrada 1)
SV9.3.34	DI status $=0000000000000000$		41273	Real Value = Modbus Value (LSB: Entrada 1)
SV9.3.35	DO status $=000$	Shows the status of digital inputs: 3,8 or 11 bits (entry 1: first from the left).	42510	Real Value = Modbus Value (LSB: Entrada 1)
SV9.3.35	DO status $=00000000$		42510	Real Value = Modbus Value (LSB: Entrada 1)
SV9.3.35	DO status $=0000000000000$		42510	Real Value = Modbus Value (LSB: Entrada 1)
SV9.3.36	DO status $=000$	Shows the status of each of the digital outputs of the central control.	42510	Real Value = Modbus Value (LSB: Salida 1)
SV9.3.37	DO status $=00000000$	Shows the status of the digital outputs: 00000000000 (entry 1: first from the left).	42510	Real Value = Modbus Value (LSB: Salida 1)
SV9.4.1	Last fault $=0$	Shows the present fault code.	42531	Real Value $=$ Modbus Value
SV9.4.2	Drive nominal current $=46.0 \mathrm{~A}$	Shows the rated current of the drive.	42532	Real Value $=($ Modbus Value / 10)
SV9.4.3	Drive nominal voltage $=500 \mathrm{~V}$	Shows the rated voltage of the drive.	42533	Real Value $=$ Modbus Value
SV9.4.6	PID setpoint $=100.0$ \%	Shows the setpoint value of the PID of the standard equipment program.	42536	Real Value = (Modbus Value / 100)
SV9.4.7	PID feedback value $=100.0 \%$	Shows the PID feedback value of the standard equipment program.	42537	Real Value = (Modbus Value / 100)
SV9.4.8.1	Comp status $1=0$	Shows the status of the three comparators.	42538	Real Value $=$ Modbus Value
SV9.4.8.2	Comp status $2=0$		42539	Real Value = Modbus Value
SV9.4.8.3	Comp status $3=0$		42540	Real Value $=$ Modbus Value
SV9.5.1	Input power $=0.0 \mathrm{~kW}$	Input power.	42543	Real Value $=($ Modbus Value / 10)
SV9.5.2	Drive input current $\mathrm{R}=0.0 \mathrm{~A}$	Current phase U.	42544	Real Value $=($ Modbus Value / 10)
SV9.5.3	Drive input current $\mathrm{S}=0.0 \mathrm{~A}$	Current phase V.	42545	Real Value $=($ Modbus Value / 10)
SV9.5.4	Drive input current $\mathrm{T}=0.0 \mathrm{~A}$	Current phase W.	42546	Real Value $=($ Modbus Value $/ 10)$
SV9.5.5	Rect. Cos Phi $=0.00$	Input Phi Cos (DPF).	42547	Real Value $=($ Modbus Value / 100)
SV9.5.6	Rect. IGBT temp. $=0^{\circ} \mathrm{C}$	Max. IGBT temperature.	42548	Real Value = Modbus Value
SV9.5.7	Frequency of PLL $=0.0 \mathrm{~Hz}$	Internal PLL frequency	42549	Real Value $=($ Modbus Value $/ 10)$
SV9.5.8	THD input $=0.00 \%$	Shows the input current distortion (THDi).	42550	Real Value $=($ Modbus Value $/ 100)$
SV9.5.9	L1-L2 supply voltage $=0 \mathrm{~V}$	Supply voltage UV.	42551	Real Value = Modbus Value
SV9.5.10	L2-L3 supply voltage $=0 \mathrm{~V}$	Supply voltage VW.	42552	Real Value = Modbus Value
SV9.5.11	L3-L1 supply voltage $=0 \mathrm{~V}$	Supply voltage WU.	42553	Real Value $=$ Modbus Value
SV9.5.12	DC bus voltage $=0 \mathrm{~V}$	DC bus voltage.	42554	Real Value $=$ Modbus Value
SV9.6.1	Speed reference $=0.0 \%$	Shows the present reference value of speed applied to the motor.	42555	Real Value = (Modbus Value / 100)
SV9.6.2	Torque reference $=0.0 \%$	Shows the present reference value of torque applied to the motor.	42556	Real Value = (Modbus Value / 100)
SV9.6.3	Motor speed (\%) = 0.0 \%	Shows the motor speed in percentage.	42557	Real Value $=($ Modbus Value / 100)

Parameter	Screen	Description	Address	Modbus Range
SV9.6.4	Motor speed (rpm) $=0 \mathrm{rpm}$	Shows the motor speed in revolutions per minute.	42558	Real Value = Modbus Value
SV9.6.5	Motor frequency $=0.0 \mathrm{~Hz}$	Shows the frequency at which the motor is running.	42559	Real Value $=($ Modbus Value $/ 10)$
SV9.6.6	Motor voltage $=0 \mathrm{~V}$	Shows the present voltage applied to the motor.	42560	Real Value = Modbus Value
SV9.6.7	Motor current $=0.0 \mathrm{~A}$	Shows the present current of the motor.	42561	Real Value $=($ Modbus Value $/ 10)$
SV9.6.8	Motor torque $=0.0 \%$	Shows the present torque applied to the motor.	42562	Real Value = (Modbus Value / 100)
SV9.6.9	Motor phi cosine $=0.85$	Shows the motor's power factor.	42563	Real Value $=($ Modbus Value / 100)
SV9.6.10	Motor power $=0.0 \mathrm{~kW}$	Shows the instantaneous power consumption of the motor.	42564	Real Value $=($ Modbus Value $/ 10)$
SV9.6.11.1	U motor current $=0.0 \mathrm{~A}$		42565	Real Value $=($ Modbus Value $/ 10)$
SV9.6.11.2	V motor current $=0.0 \mathrm{~A}$	Shows the instantaneous current per phase of the motor (U, V and W).	42566	Real Value $=($ Modbus Value $/ 10)$
SV9.6.11.3	W motor current $=0.0 \mathrm{~A}$		42567	Real Value $=($ Modbus Value $/ 10)$
SV9.6.12.1	$\mathrm{U}-\mathrm{V}$ motor voltage $=0 \mathrm{~V}$		42568	Real Value = Modbus Value
SV9.6.12.2	$\mathrm{V}-\mathrm{W}$ motor voltage $=0 \mathrm{~V}$	Shows the instantaneous line voltage (UV, VW and WU).	42569	Real Value $=$ Modbus Value
SV9.6.12.3	$\mathrm{W}-\mathrm{U}$ motor voltage $=0 \mathrm{~V}$		42570	Real Value $=$ Modbus Value
SV9.6.13	PTC Status $=$ No	Shows whether the motor PTC is connected or disconnected.	42571	Real Value $=$ Modbus Value
SV9.6.14	Motor temperature(\%) = 0.0 \%	Shows the theoretical heating level of the motor.	42572	Real Value = (Modbus Value / 100)
SV9.6.15	Motor temperature $=0{ }^{\circ} \mathrm{C}$	Shows the motor temperature measured with the PT100 sensor.	42573	Real Value $=$ Modbus Value
SV12.1	Last warning $=0$	Register number 1 of the warning history.	41711	Real Value $=$ Modbus Value
SV12.2	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 9 of warning history.	$\begin{aligned} & 41712 \text { - Date } \\ & 41713 \text { - Time } \end{aligned}$	Real Value = Modbus Value
SV12.3	Ninth warning $=0$	Register number 9 of the warning history.	41714	Real Value $=$ Modbus Value
SV12.4	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 8 of warning history.	$\begin{aligned} & 41715 \text { - Date } \\ & 41716 \text { - Time } \end{aligned}$	Real Value $=$ Modbus Value
SV12.5	Eighth warning $=0$	Register number 8 of the warning history.	41717	Real Value $=$ Modbus Value
SV12.6	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 7 of warning history.	$\begin{aligned} & 41718 \text { - Date } \\ & 41719 \text { - Time } \end{aligned}$	Real Value $=$ Modbus Value
SV12.7	Seventh warning $=0$	Register number 7 of the warning history.	41720	Real Value $=$ Modbus Value
SV12.8	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 6 of warning history.	$\begin{aligned} & 41721 \text { - Date } \\ & 41722 \text { - Time } \end{aligned}$	Real Value = Modbus Value
SV12.9	Sixth warning $=0$	Register number 6 of the warning history.	41723	Real Value $=$ Modbus Value
SV12.10	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 5 of warning history.	$\begin{aligned} & 41724 \text { - Date } \\ & 41725 \text { - Time } \end{aligned}$	Real Value = Modbus Value
SV12.11	Fifth warning $=0$	Register number 5 of the warning history.	41726	Real Value = Modbus Value
SV12.12	Date $=01 / 01 / 200000: 00$	Date and time of the register number 4 of warning history.	$\begin{aligned} & 41727 \text { - Date } \\ & 41728 \text { - Time } \end{aligned}$	Real Value = Modbus Value
SV12.13	Fourth warning $=0$	Register number 4 of the warning history.	41729	Real Value = Modbus Value
SV12.14	Date $=01 / 01 / 200000: 00$	Date and time of the register number 3 of warning history.	$\begin{aligned} & 41730 \text { - Date } \\ & 41731 \text { - Time } \\ & \hline \end{aligned}$	Real Value = Modbus Value
SV12.15	Third warning $=0$	Register number 3 of the warning history.	41732	Real Value = Modbus Value
SV12.16	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 2 of warning history.	$\begin{aligned} & 41733 \text { - Date } \\ & 41734 \text { - Time } \end{aligned}$	Real Value = Modbus Value
SV12.17	Second warning $=0$	Register number 2 of the warning history.	41735	Real Value $=$ Modbus Value
SV12.18	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 1 of warning history.	$\begin{aligned} & 41736 \text { - Date } \\ & 41737 \text { - Time } \end{aligned}$	Real Value = Modbus Value
SV12.19	First warning $=0$	Register number 1 of the warning history.	41738	Real Value $=$ Modbus Value
SV12.20	Date $=01 / 01 / 2000$ 00:00	Date and time of the register number 1 of warning history.	$\begin{aligned} & 41739 \text { - Date } \\ & 41740 \text { - Time } \end{aligned}$	Real Value = Modbus Value

Parameter	Screen	Description	Address	Modbus Range
SV12.21	Erase warning history = No	Clears the content of the warnings' history.	41741	Real Value $=$ Modbus Value
SV13.1	Speed reference $=0.0 \%$	Shows the speed reference value applied to the local motor.	41671	Real Value = (Modbus Value / 100)
SV13.2	Torque reference $=0.0$ \%	Shows the torque reference value applied to the motor.	41672	Real Value = (Modbus Value / 100)
SV13.3	Motor speed (\%) = 0.0 \%	Shows the local motor speed in percentage.	41673	Real Value = (Modbus Value / 100)
SV13.4	Motor speed (rpm) $=0 \mathrm{rpm}$	Shows the local motor speed in revolutions per minute.	41674	Real Value = Modbus Value
SV13.5	Motor frequency $=0.0 \mathrm{~Hz}$	Shows the frequency applied to the local motor.	41675	Real Value $=($ Modbus Value / 10)
SV13.6	Motor voltage $=0 \mathrm{~V}$	Shows the voltage value applied to the local motor.	41676	Real Value = Modbus Value
SV13.7	Motor current $=0.0 \mathrm{~A}$	Shows the current flowing to the local motor.	41677	Real Value $=($ Modbus Value / 10)
SV13.8	Motor torque $=0.0$ \%	Shows the torque applied to the local motor.	41678	Real Value = (Modbus Value / 100)
SV13.9	Motor phi cosine $=0.85$	Shows the local motor's power factor.	41679	Real Value $=($ Modbus Value $/ 100)$
SV13.10	Motor power $=0.0 \mathrm{~kW}$	Shows the instantaneous power consumption of the local motor.	41680	Real Value $=($ Modbus Value / 10)
SV13.11.1	U motor current $=0.0 \mathrm{~A}$	Shows the instantaneous current of each phase of the local motor (U, V and W).	41681	Real Value $=($ Modbus Value $/ 10)$
SV13.11.2	V motor current $=0.0 \mathrm{~A}$		41682	Real Value $=($ Modbus Value / 10)
SV13.11.3	W motor current $=0.0 \mathrm{~A}$		41683	Real Value $=($ Modbus Value $/ 10)$
SV13.12.1	$\mathrm{U}-\mathrm{V}$ motor voltage $=0 \mathrm{~V}$	Shows the instantaneous voltage applied (UV, VW and WU) to the local motor.	41684	Real Value $=$ Modbus Value
SV13.12.2	V - W motor voltage $=0 \mathrm{~V}$		41685	Real Value = Modbus Value
SV13.12.3	W -U motor voltage $=0 \mathrm{~V}$		41686	Real Value $=$ Modbus Value
SV13.13	PTC Status $=$ No	Shows whether the local motor PTC is connected or disconnected.	41687	Real Value = Modbus Value
SV13.14	Estimat. Mot. temp(\%) = 0.0 \%	Shows the estimated local motor temperature.	41688	Real Value = (Modbus Value / 100)
SV13.15	Motor temperature $=0{ }^{\circ} \mathrm{C}$	Shows the local motor temperature measured with the PT100 sensor.	41689	Real Value = Modbus Value

COMMON CONFIGURATIONS

Start / Stop commands and speed reference by keypad

Parameter configuration

Parameter	Description	Value
G1: Options		
G1.2 Language	Language selection	English.
G1.5 Activate programs	Program activation	Standard.
G2: Motor Nameplate		
G2.1 Motor plate current	Motor rated current	_ A (Set according to motor nameplate).
G2.2 Motor plate voltage	Motor rated voltage	__V (Set according to motor nameplate).
G2.3 Motor plate power	Motor rated power	__kW (Set according to motor nameplate).
G2.4 Motor plate rpm :	Motor rpm	__rpm (Set according to motor nameplate).
G2.5 Motor plate phi cosine	Cosine Phi	_ (Set according to motor nameplate).
G2.6 Motor plate frequency	Motor frequency	__Hz (Set according to motor nameplate).
G2.7 Motor cooling	Motor cooling at zero speed	Use the following values as reference: Submersible pumps and non-deflagrating motors $\rightarrow 5 \%$ Self-cool motor $\rightarrow 63 \%$ Force-cooled motor \rightarrow 100\%
G3: References		
G3.1 Speed ref 1 source	Speed reference source 1	Local \rightarrow Reference will be determined by keypad and is set in G3.3 'Local Speed Reference'.
G3.3 Speed local reference	Local Speed Reference	+100\%
G4: Inputs - G4.1: Digital Inputs		
G4.1.1 Main control mode	Main Control Mode	$1 \rightarrow$ Local (Drive control is done by keypad).
G4.1.3 Allow local reset	Reset by keypad	$1 \rightarrow$ Yes (Enables reset by keypad).
G24: Rectifier.		
G24.1.1 Vdc ref mode	Select the bus DC voltage adjust mode	Fixed $\boldsymbol{\rightarrow}$ Allows manual adjustment of the bus DC voltage in parameter G24.1.2.
G24.1.2 Vdc ref	DC bus voltage	Set the DC bus voltage in accordance with the installation.
G24.1.3 Cos phi	Displacement power factor	Set the displacement power factor (cos phi) as 1.
G24.1.4 Cos phi setting	Cosine Phi	Set the cos phi as capacitive.
G24.1.5 Delay off rect	Rectifier bridge switching off	Set the delay of the rectifier bridge switching off to 0 .
G24.1.6 Eq lin	Balance of the input current	Set the balance of the input current to No.
G24.1.7 Rectifier frequency	Rectifier bridge frequency	Set the rectifier bridge frequency to 2800 Hz .
G24.1.8 Delay start inverter	Delay start time of the inverter bridge.	Set the delay time to start the inverter bridge.

Start / Stop commands by terminals and speed reference by analogue input

Parameter configuration

Parameter	Description	Value
G1: Options		
G1.2 Language	Language selection	English.
G1.5 Activate programs	Program activation	Standard.
G2: Motor Nameplate		
G2.1 Motor plate current	Motor rated current	_ A (Set according to motor nameplate).
G2.2 Motor plate voltage	Motor rated voltage	_V (Set according to motor nameplate).
G2.3 Motor plate power	Motor rated power	__kW (Set according to motor nameplate).
G2.4 Motor plate rpm	Motor rpm	__rpm (Set according to motor nameplate).
G2.5 Motor plate phi cosine	Cosine Phi	_ (Set according to motor nameplate).
G2.6 Motor plate frequency	Motor frequency	$\ldots \mathrm{Hz}$ (Set according to motor nameplate).
G2.7 Motor cooling	Motor cooling at zero speed	Use the following values as reference: Submersible pumps and non-deflagrating motors $\rightarrow 5 \%$ Self-cool motor $\rightarrow 63 \%$ Force-cooled motor \rightarrow 100\%
G3: References		
G3.1 Speed ref 1 source	Speed reference source 1	Local \rightarrow Reference will be determined by keypad and is set in G3.3 'Local Speed Reference'.
G3.2 Speed ref 2 source	Speed reference source 2	Al1 \rightarrow Reference will be introduced by Analogue Input 1.
G3.3 Speed local reference	Local Speed Reference	+100\%
G4: Inputs - G4.1: Digital Inputs		
G4.1.1 Main control mode	Main Control Mode	$2 \rightarrow$ Remote (Drive control is done through control terminals).
G4.1.4 Digital input mode	Digital Inputs configuration selection	$1 \rightarrow$ All programmable (all digital inputs can be individually configured by the user).
G4.1.5 Digital Input 1	Multi-function Digital Input 1 configuration	$05 \rightarrow$ Start / Stop (Allows the start/stop command to be given by a switch).
G4.1.6 Digital Input2	Multi-function Digital Input 2 configuration	$15 \rightarrow$ Reference 2 (Allows selecting the alternative speed reference programmed in G 3.2).
G24: Rectifier.		
G24.1.1 Vdc ref mode	Select the bus DC voltage adjust mode	Fixed \rightarrow Allows manual adjustment of the bus DC voltage in parameter G24.1.2.
G24.1.2 Vdc ref	DC bus voltage	Set the DC bus voltage in accordance with the installation.
G24.1.3 Cos phi	Displacement power factor	Set the displacement power factor (cos phi) as 1.
G24.1.4 Cos phi setting	Cosine Phi	Set the cos phi as capacitive.
G24.1.5 Delay off rect	Rectifier bridge switching off	Set the delay of the rectifier bridge switching off to 0 .
G24.1.6 Eq lin	Balance of the input current	Set the balance of the input current to No.
G24.1.7 Rectifier frequency	Rectifier bridge frequency	Set the rectifier bridge frequency to 2800 Hz .
G24.1.8 Delay start inverter	Delay start time of the inverter bridge.	Set the delay time to start the inverter bridge.

See connection drawing in the next page.

Connection drawing

Terminals 7 and 8: start / stop command (NO status).
Terminals 7 and 9: alternative reference command (NO status).

Note: Use screened cables for the controls and connect screen to ground.

Start / Stop commands by terminals and speed reference by motorized potentiometer

Parameter configuration

Parameter	Description	Value
G1: Options		
G1.2 Language	Language selection	ENGLISH
G1.5 Activate programs	Program activation	STANDARD
G2: Motor Nameplate		
G2.1 Motor plate current	Motor rated current	A (Set according to motor nameplate).
G2.2 Motor plate voltage	Motor rated voltage	\checkmark (Set according to motor nameplate).
G2.3 Motor plate power	Motor rated power	kW (Set according to motor nameplate).
G2.4 Motor plate rpm	Motor rpm	__rpm (Set according to motor nameplate).
G2.5 Motor plate phi cosine	Cosine Phi	_ (Set according to motor nameplate).
G2.6 Motor plate frequency	Motor frequency	Hz (Set according to motor nameplate).
G2.7 Motor cooling	Motor cooling at zero speed	Use the following values as reference: Submersible pumps and non-deflagrating motors $\rightarrow 5 \%$ Self-cool motor $\rightarrow 63 \%$ Force-cooled motor \rightarrow 100\%
G3: References		
G3.1 Speed ref 1 source	Speed reference source 1	Motorized potentiometer \rightarrow Motorized potentiometer with or without reference memory.
G3.2 Speed ref 2 source	Speed reference source 2	Analog Input $1 \rightarrow$ Reference will be introduced by Analogue Input 1.
G3.3 Speed local reference	Local Speed Reference	+100\%
G4: Inputs - G4.1: Digital Inputs		
G4.1.1 Main control mode	Main Control Mode	$2 \rightarrow$ Remote (Drive control is done through control terminals).
G4.1.4 Digital input mode	Digital Inputs configuration selection	$4 \rightarrow$ Motorized potentiometer (It assigns the up and down reference function for two of the digital inputs. DI4 = Up (NO contact) and DI5 = Down (NC contact). With reference memory). $5 \rightarrow$ Resettable potentiometer (As the previous option but without reference memory).
G4.1.5 Digital Input 1	Multi-function Digital Input 1 configuration	$05 \rightarrow$ Start / Stop (Allows the start/stop command to be given by a switch).
G5: Acceleration / deceleration rates		
G5.3.1 Mot pot accel rate 1	Ramp 1 of reference increase for motorized potentiometer	1.0% / s (Modify these ramps to tune operation). If the ramp is increased the speed reference response will be faster. If the ramp is decreased the speed reference response will be slower.
G5.3.2 Mot pot decel rate 1	Ramp 1 of reference decrease for motorized potentiometer	3.0% / s (Modify these ramps to tune operation). If the ramp is increased the speed reference response will be faster. If the ramp is decreased the speed reference response will be slower.
G24: Rectifier.		
G24.1.1 Vdc ref mode	Select the bus DC voltage adjust mode	Fixed $\boldsymbol{\rightarrow}$ Allows manual adjustment of the bus DC voltage in parameter G24.1.2.
G24.1.2 Vdc ref	DC bus voltage	Set the DC bus voltage in accordance with the installation.
G24.1.3 Cos phi	Displacement power factor	Set the displacement power factor (cos phi) as 1.
G24.1.4 Cos phi setting	Cosine Phi	Set the cos phi as capacitive.
G24.1.5 Delay off rect	Rectifier bridge switching off	Set the delay of the rectifier bridge switching off to 0 .
G24.1.6 Eq lin	Balance of the input current	Set the balance of the input current to No.
G24.1.7 Rectifier frequency	Rectifier bridge frequency	Set the rectifier bridge frequency to 2800 Hz .
G24.1.8 Delay start inverter	Delay start time of the inverter bridge.	Set the delay time to start the inverter bridge.

See connection drawing in the next page.

Connection drawing

Terminals 7 and 8: start / stop command (NO status).
Terminals 7 and 12: up speed command (NO status).
Terminals 7 and 13: down speed command (NC status).

J2 CONNECTOR

J5 CONNECTOR

SD75DTC0008AI

Start / Stop Commands by Terminals and Speed Reference by Motorized Potentiometer

Note: Use screened cables for the controls and connect screen to ground.

Start / Stop commands by terminals and seven speed references selectable by digital inputs

Parameter configuration

Parameter	Description	Value
G1: Options		
G1.2 Language	Language selection	English.
G1.5 Activate programs	Program activation	Standard.
G2: Motor Nameplate.		
G2.1 Motor plate current	Motor rated current	_ A (Set according to motor nameplate).
G2.2 Motor plate voltage	Motor rated voltage	_V (Set according to motor nameplate).
G2.3 Motor plate power	Motor rated power	kW (Set according to motor nameplate).
G2.4 Motor plate rpm :	Motor rpm	__rpm (Set according to motor nameplate).
G2.5 Motor plate phi cosine	Cosine Phi	_ (Set according to motor nameplate).
G2.6 Motor plate frequency	Motor frequency	Hz (Set according to motor nameplate).
G2.7 Motor cooling	Motor cooling at zero speed	Use the following values as reference: Submersible pumps and non-deflagrating motors $\rightarrow 5 \%$ Self-cool motor $\rightarrow 63 \%$ Force-cooled motor \rightarrow 100\%
G3: References.		
G3.1 Speed ref 1 source	Speed reference source 1	Multireferences $\boldsymbol{\rightarrow}$ Multiple speed references activated by digital inputs.
G4: Inputs - G4.1: Digital Inputs		
G4.1.1 Main control mode	Main Control Mode	$2 \rightarrow$ Remote (Drive control is done through control terminals).
G4.1.4 Digital input mode	Digital Inputs configuration selection	$3 \rightarrow$ Mref 3 wires (Automatically programs digital inputs 4,5 and 6 as multiple speed references for up to 7 different values. The others digital inputs remain user configurable).
G4.1.5 Digital Input 1	Multi-function Digital Input 1 configuration	$05 \rightarrow$ Start / Stop (Allows the start/stop command to be given by a switch).
G14: Multi-references		
G14.1 Multi reference 1	Multi-reference 1	$+10.0 \%$ (Allows setting the setpoint 1 value for the drive. It should be set according to the application requirements).
G14.2 Multi reference 2	Multi-reference 2	$+20.0 \%$ (Allows setting the setpoint 2 value for the drive. It should be set according to the application requirements).
G14.3 Multi reference 3	Multi-reference 3	$+30.0 \%$ (Allows setting the setpoint 3 value for the drive. It should be set according to the application requirements).
G14.4 Multi reference 4	Multi-reference 4	$+40.0 \%$ (Allows setting the setpoint 4 value for the drive. It should be set according to the application requirements).
G14.5 Multi reference 5	Multi-reference 5	$+50.0 \%$ (Allows setting the setpoint 5 value for the drive. It should be set according to the application requirements).
G14.6 Multi reference 6	Multi-reference 6	$+60.0 \%$ (Allows setting the setpoint 6 value for the drive. It should be set according to the application requirements).
G14.7 Multi reference 7	Multi-reference 7	$+70.0 \%$ (Allows setting the setpoint 7 value for the drive. It should be set according to the application requirements).
G24: Rectifier.		
G24.1.1 Vdc ref mode	Select the bus DC voltage adjust mode	Fixed \rightarrow Allows manual adjustment of the bus DC voltage in parameter G24.1.2.
G24.1.2 Vdc ref	DC bus voltage	Set the DC bus voltage in accordance with the installation.
G24.1.3 Cos phi	Displacement power factor	Set the displacement power factor (cos phi) as 1.
G24.1.4 Cos phi setting	Cosine Phi	Set the cos phi as capacitive.
G24.1.5 Delay off rect	Rectifier bridge switching off	Set the delay of the rectifier bridge switching off to 0 .
G24.1.6 Eq lin	Balance of the input current	Set the balance of the input current to No.
G24.1.7 Rectifier frequency	Rectifier bridge frequency	Set the rectifier bridge frequency to 2800 Hz .
G24.1.8 Delay start inverter	Delay start time of the inverter bridge.	Set the delay time to start the inverter bridge.

See connection drawing in the next page.

Connection drawing

Terminals 7 and 8: start / stop command (NO status).
Terminals 7 and 11: multi-reference A (NO status).
Terminals 7 and 12: multi-reference M (NO status).
Terminals 7 and 13: multi-reference B (NO status).

SPEED	REF	Digital Input 4 Multi-reference-A	Digital Input 5 Multi-reference-M	Digital Input 6 Multi-reference-B
G14.1 $\boldsymbol{= + 1 0 . 0 \%}$	Multireferences1	0	0	X
G14.2 $\boldsymbol{= + 2 0 . 0 \%}$	Multireferences2	0	X	0
G14.3 $\boldsymbol{= + 3 0 . 0 \%}$	Multireferences3	0	X	X
G14.4 $\boldsymbol{= + 4 0 . 0 \%}$	Multireferences4	X	0	0
G14.5 $\boldsymbol{= + 5 0 . 0 \%}$	Multireferences5	X	0	X
G14.6 $\boldsymbol{= + 6 0 . 0 \%}$	Multireferences6	X	X	0
G14.7 $\boldsymbol{= + 7 0 . 0 \%}$	Multireferences7	X	X	X

Note: 0 : Not active and X : Active.

J2 CONNECTOR

J5 CONNECTOR

Start / Stop Commands by Terminals and Seven Speed References Selectable by Digital Inputs.

Note: Use screened cables for the controls and connect screen to ground.

CONFIGURATION REGISTER

VARIABLE SPEED DRIVE: SD750FR.

SERIAL №:
MODEL:
APPLICATION:
DATE:
CUSTOMER:
NOTES:

PARAMETER	default value	SETTING 1	SETTING 2
G1: Options			
G1.1-Lock parameters	No		
G1.1a-Lock password	0		
G1.1b-Unlock password recov.	0		
G1.2-Language	Spanish		
G1.3-nitialise	No init		
G1.4-Short menu	No		
G1.5-Activate programs	Standard		
G1.6-Service group password	Group reserved for Technical Service staff of Power Electronics' authorized personnel.		
G1.7-Network synchronization	No		
G2: Motor Nameplate Data			
G2.1-Motor plate current	1.0 ln A		
G2.2-Motor plate voltage	OV		
G2.3-Motor plate power	Pn kW		,

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G2.4-Motor plate rpm	1485 rpm		
G2.5-Motor plate phi cosine	0.85		
G2.6-Motor plate frequency	50 Hz		
G2.7-Motor cooling	63 \%		
	G3: References		
G3.1-Speed ref 1 source	Local		
G3.2-Speed ref 2 source	Local		
G3.3-Speed local reference	100.0 \%		
G3.4-Torque ref 1 source	Local		
G3.5-Torque ref 2 source	Local		
G3.6-Torque local reference	100.0\%		

G4: Inputs - G4.1: Digital Inputs		
G4.1.1-Main control mode	Local	
G4.1.2-Alternative ctrl mode	Remote	
G4.1.3-Allow local reset	Yes	
G4.1.4-Digital input mode	All programmable	
G4.1.5-Digital Input 1	Start / Stop	
G4.1.6-Digital Input 2	Reference 2	
G4.1.7-Digital Input 3	Control 2	
G4.1.8-Digital Input 4	Reset (NC)	
G4.1.9-Digital Input 5	Not used	
G4.1.10-Digital Input 6/PTC	Not used	
G4.1.11-Digital Input 7	Not used	
G4.1.12-Digital Input 8	Not used	
G4.1.13-Digital Input 9	Not used	
G4.1.14-Digital Input 10	Not used	
G4.1.15-Digital Input 11	Not used	
G4.1.16-Digital Input 12	Not used	
G4.1.17-Digital Input 13	Not used	
G4.1.18-Digital Input 14	Not used	
G4.1.19-Digital Input 15	Not used	
G4.1.20-Digital Input 16	Not used	
G4.1.27 Feedback Err. Timeout	1.0 s	
G4.1.28-Invert Input mode	6 bits	

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G4: Inputs - G4.2: Analogue Input 1			
G4.2.1-Enable sensor	No		
G4.2.2-Sensor unit	1/s		
G4.2.3-Al1 Format	V		
G4.2.4-Al1 low level	0.0 V		
G4.2.5-Sensor low level	$0.0 \mathrm{l} / \mathrm{s}$		
G4.2.6-Al1 high level	10.0 V		
G4.2.7-Sensor high level	10.0 //s		
G4.2.8-Al1 Ref speed min	0.0 \%		
G4.2.9-Al1 Ref speed max	100.0 \%		
G4.2.10-Sensor min value	$0.0 \mathrm{l} / \mathrm{s}$		
G4.2.11-Open loop min speed	0.0 \%		
G4.2.12-Sensor max value	10.0 //s		
G4.2.13-Open loop max speed	100.0 \%		
G4.2.14-Al1 loss protection	No		
G4.2.15-Al1 zero band filter	Off		
G4.2.16-Al1 stabilizer filter	Off		
G4: Inputs - G4.3: Analogue Input 2 / Pulse			
G4.3.0-Enable Pulse In. Mode	No		
G4.3.1-Enable sensor	No		
G4.3.2-Sensor unit	Bar		
G4.3.2-Sensor unit Pulse In.	1/s		
G4.3.2b-Pulses per unit	100		
G4.3.2c-Max pulses	1000		
G4.3.3-Al2 Format	mA		
G4.3.4-Al2 low level	4.0 mA		
G4.3.5-Sensor low level	0.0 Bar		
G4.3.6-Al2 high level	10.0 mA	-	迷
G4.3.7-Sensor high level	10.0 Bar		迷
G4.3.8-Al2 Ref speed min	0.0 \%		
G4.3.9-Al2 Ref speed max	100.0 \%		
G4.3.10-Sensor min value	0.0 Bar		
G4.3.11-Open loop min speed	0.0 \%		
G4.3.12-Sensor max value	10.0 Bar		

PARAMETER	DEFAULT VALUE	SETTING 1	
G4.3.13-Open loop max speed	100.0%		
G4.3.14-Al2 loss protection	No		
G4.3.15-Al2 zero band filter	off		
G4.3.16-Al2 stabilizer filter	Off		

G4: Inputs - G4.4: Analogue Input 3 / PT100

G4.4.0-PT100 Mode No

| G4.4.1-Enable sensor | No | |
| :--- | :---: | :--- | :--- |
| G4.4.2-Sensor unit | I / s | - |
| G4.4.3-Al3 Format | V | - |
| G4.4.4-Al3 low level | 0.0 V | - |

G4.4.5-Sensor low level $\quad 0.0$
G4.4.6-Al3 high level $\quad 10.0 \mathrm{~V}$

G4.4.7-Sensor high level	$10.01 / \mathrm{s}$
G4.4.8-Al3 Ref speed min	0.0%

G4.4.9-Al3 Ref speed max 100.0%
G4.4.10-Sensor min value $0.0 \mathrm{l} / \mathrm{s}$
G4.4.11-Open loop min speed 0.0%
G4.4.12-Sensor max value $10.0 \mathrm{l} / \mathrm{s}$
G4.4.13-Open loop max speed 100.0%
G4.4.14-Al3 loss protection No
G4.4.15-Al3 zero band filter Off
G4.4.16-Al3 stabilizer filter Off
G4.4.17-PT100 stabilizer filt
10.0s

G5: Acc/Dec rates - G5.1: Acceleration

G5.1.1-Acceleration rate 1	$1.50 \% / \mathrm{s}$		
G5.1.2-Acceleration rate 2	$2.00 \% / \mathrm{s}$		
G5.1.3-Accel break speed	Off		
G5.1.4-Ramp after V.Deep	$1.50 \% / \mathrm{s}$		
	G5: Acc/Dec rates - G5.2: Deceleration		
G5.2.1-Deceleration rate 1	$1.50 \% / \mathrm{s}$		
G5.2.2-Deceleration rate 2	$2.00 \% / \mathrm{s}$		
G5.2.3-Decel break speed	Off		

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G5: Acc/Dec rates - G5.3: Motorized potentiometer			
G5.3.1-Mot pot accel rate 1	1.00 \%/s		
G5.3.2-Mot pot decel rate 1	$3.00 \% / s$		
G5.3.3-Mot pot accel rate 2	1.00 \%/s		
G5.3.4-Mot pot decel rate 2	$3.00 \% / \mathrm{s}$		
G5.3.5-Mot pot rate brk speed	0 \%		

G5: Acc/Dec rates - Others

G5.4-Speed filter

G6: PID Control
\qquad

G7: Start / Stop Control - G7.1 Start

G7: Start / Stop Control - G7.2 Stop

| G7.2.1-Main stop mode | Ramp | |
| :--- | :---: | :--- | :--- |
| G7.2.2-Alternative stop mode | Spin | |
| G7.2.3-Stop mode switch speed | Off | |
| G7.2.4-Stop delay | Off | |

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G7.2.5-Stop at min speed	Off		
G7.2.6-Power off delay	Off		
G7: Start / Stop Control - G7.3 Spin start			
G7.3.1-Spin start tune	10 \%		
G7.3.2-Minimum speed	0.0 \%		
G7.3.3-Magnetization tim	1.0 s		
G8: Outputs - G8.1: Output Relays			
G8.1.0.1-Group 1	Off		
G8.1.0.2-Group 2	Off		
G8.1.0.3-Group 3	Off		
G8.1.1-Relay 1 source select	Run		
G8.1.2-Relay 1 ON delay	0.0 s		
G8.1.3-Relay 1 OFF delay	0.0 s		
G8.1.4-Relay 1 inversion	No		
G8.1.5-Relay 2 source select	Always OFF		
G8.1.6-Relay 2 ON delay	0.0 s		
G8.1.7-Relay 2 OFF delay	0.0 s		
G8.1.8-Relay 2 inversion	No		
G8.1.9-Relay 3 source select	Always OFF		
G8.1.10-Relay 3 ON delay	0.0 s		
G8.1.11-Relay 3 OFF delay	0.0 s		
G8.1.12-Relay 3 inversion	No		
G8.1.13-Relay 4 src select	Always OFF		
G8.1.14-Relay 4 ON delay	0.0 s		
G8.1.15-Relay 4 OFF delay	0.0 s		
G8.1.16-Relay 4 inversion	No	-	
G8.1.17-Relay 5 src select	Always OFF		
G8.1.18-Relay 5 ON delay	0.0 s	-	
G8.1.19-Relay 5 OFF delay	0.0 s		
G8.1.20-Relay 5 inversion	No	-	
G8.1.21-Relay 6 source select	Always OFF		
G8.1.22-Relay 6 ON delay	0.0 s		
G8.1.23-Relay 6 OFF delay	0.0 s		

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G8.1.24-Relay 6 inversion	No		
G8.1.25-Relay 7 source select	Always OFF		
G8.1.26-Relay 7 ON delay	0.0 s		
G8.1.27-Relay 7 OFF delay	0.0 s		
G8.1.28-Relay 7 inversion	No		
G8.1.29-Relay 8 src select	Always OFF		
G8.1.30-Relay 8 ON delay	0.0 s		
G8.1.31-Relay 8 OFF delay	0.0 s		
G8.1.32-Relay 8 inversion	No		
G8.1.33-Relay 9 src select	Always OFF		
G8.1.34-Relay 9 ON delay	0.0 s		
G8.1.35-Relay 9 OFF delay	0.0 s		
G8.1.36-Relay 9 inversion	No		
G8.1.37-Relay 10 src select	Always OFF		
G8.1.38-Relay 10 ON delay	0.0 s		
G8.1.39-Relay 10 OFF delay	0.0 s		
G8.1.40-Relay 10 inversion	No		
G8.1.41-Relay 11 src select	Always OFF		
G8.1.42-Relay 11 ON delay	0.0 s		
G8.1.43-Relay 11 OFF delay	0.0 s		
G8.1.44-Relay 11 inversion	No		
G8.1.45-Relay 12 src select	Always OFF		
G8.1.46-Relay 12 ON delay	0.0 s		
G8.1.47-Relay 12 OFF delay	0.0 s		
G8.1.48-Relay 12 inversion	No		-
G8.1.49-Relay 13 src select	Always OFF	-	迷
G8.1.50-Relay 13 ON delay	0.0 s	-	-
G8.1.51-Relay 13 OFF delay	0.0 s		
G8.1.52-Relay 13 inversion	No		-
G8.1.53-Speed for crane brake	0.00 \%		-
G8: Outputs - G8.2: Analogue Output 1			
G8.2.1-A01 source selection $=$ Motor speed	Motor Speed		
G8.2.2-01 format $=4 . .20 \mathrm{~mA}$	$4-20 \mathrm{~mA}$		
G8.2.3-A01 low level	0 \%		

G9: Comparators - G9.1: Comparator 1

G9.1.1-Comp 1 source sel	None
G9.1.2-Comp 1 type	Normal
G9.1.3-Comp 1 ON level	100%
G9.1.4-Comp 1 OFF level	0 \%
G9.1.3-Comp 1 window limit 2	100%
G9.1.4-Comp 1 window limit 1	0 \%
G9.1.5-Comp 1 ON delay	0.0 s
G9.1.6-Comp 1 OFF delay	0.0 s
G9.1.7-Comp 1 output function	Not used

G9: Comparators - G9.2: Comparator 2

G9.2.1-Comp 2 source sel	None
G9.2.2-Comp 2 type	Normal
G9.2.3-Comp 2 ON level	100%
G9.2.4-Comp 2 OFF level	0 \%
G9.2.3-Comp 2 window limit 2	100%
G9.2.4-Comp 2 window limit 1	0 \%
G9.2.5-Comp 2 ON delay	0.0 s
G9.2.6-Comp 2 OFF delay	0.0 s
G9.2.7-Comp 2 output function	Not used

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G9: Comparators - G9.3: Comparator 3			
G9.3.1-Comp 3 source sel	None		
G9.3.2-Comp 3 type	Normal		
G9.3.3-Comp 3 ON level	100%		
G9.3.4-Comp 3 OFF level	0 \%		
G9.3.3-Comp 3 window limit 2	100%		
G9.3.4-Comp 3 window limit 1	0 \%		
G9.3.5-Comp 3 ON delay	0.0 s		
G9.3.6-Comp 3 OFF delay	0.0 s		
G9.3.7-Comp 3 output function	Not used		
G10: Limits - G10.1 Speed			
G10.1.1-Minimum limit 1	-100.00 \%		
G10.1.2-Maximum limit 1	100.00 \%		
G10.1.3-Minimum limit 2	-100.00 \%		
G10.1.4-Maximum limit 2	100.00 \%		
G10.1.5-Maximum lim timeout	Off		
G10.1.6-Minimum lim timeout	Off		
G10.1.7-Invert speed	No		
G10: Limits - G10.2 Current / Torque			
G10.2.1-Current limit	1.2ln A		
G10.2.2-I limit timeout	Off		
G10.2.3-Current limit 2	1.2ln A		
G10.2.4-I limit 2 timeout	Off		
G10.2.5-I limit 2 switch speed	Off		
G10.2.6-Torque limit	150.0 \%		
G10.2.7-Torque limit timeout	Off	-	
G10.2.8-Torque limit 2	150.0 \%	-	
G10.2.9-Torque lim 2 timeout	Off	-	
G10.2.1-Torque I 2 swt speed	Off		
G10.2.11-Regeneration I limit	Off		
G10.2.12-I limit Regen Time	Off		
G10.2.13-Reg torque limit	150.0 \%		
G10.2.14-Reg torque limit time	Off		
G10.2.15-Disable limit I/T	No		

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G11: Protections - G11.1 Input			
G11.1.1-Supply under voltage	0.875Vn V		
G11.1.2-Under voltage timeout	5.0 s		
G11.1.3-Supply over voltage	1.075 Vn V		
G11.1.4-Over voltage timeout	5.0 s		
G11.1.5-Low voltage behavior	Faults		
G11.1.6-LVRT input threshold	25 \%		
G11.1.7-LVRT output threshold	5 \%		
G11: Protections - G11.2 Motor			
G11.2.1-Stop timeout	Off		
G11.2.2-Ground current limit	20 \%		
G11.2.3-I out asym trip delay	5.0 s		
G11.2.4-V asym out trip delay	5.0 s		
G11.2.5-PT100 motor fault	Off		
G11.2.6-PT100 fault timeout	30 s		
G11.2.7-Fault with no load	No		
G11.2.8-Overload level	20.0 A		
G11.2.9-Overload filter	Off		
G11.2.10-Ooverload delay	60 s		
G11.2.11-Underload enable	No		
G11.2.12-Underload current	1.0ln A		
G11.2.13-Underload speed	100.0 \%		
G11.2.14-Underload flt dly	10.0 s		
G11.2.15-Desync. Threshold	40.0 \%		
G11.2.16-PMSM Desync. Time	0.10 s		
	G12: Auto Res		
G12.1-Enable autoreset	No		
G12.2-Retries max number	1	-	
G12.3-Autoreset delay	5 s		
G12.4-Counter reset time	15 min	-	
G12.5-Autoreset fault 1	Off	-	-
G12.6-Autoreset fault 2	Off		
G12.7-Autoreset fault 3	Off		
G12.8-Autoreset fault 4	Off		

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G13: Fault History			
G13.1-Fault Register 1	0		
G13.2-Fault Register 2	0		
G13.3-Fault Register 3	0		
G13.4-Fault Register 4	0		
G13.5-Fault Register 5	0		
G13.6-Fault Register 6	0		
G13.7-Erase fault history	No		
G14: Multi-references			
G14.1-Multi-reference 1	10.00 \%		
G14.2-Multi-reference 2	20.00 \%		
G14.3-Multi-reference 3	30.00 \%		
G14.4-Multi-reference 4	40.00 \%		
G14.5-Multi-reference 5	50.00 \%		
G14.6-Multi-reference 6	60.00 \%		
G14.7-Multi-reference 7	70.00 \%		
G15: Inch Speeds			
G15.1-Inch speed 1	0.00 \%		
G15.2-Inch speed 2	0.00%		
G15.3-Inch speed 3	0.00 \%		
G16: Skip Frequencies			
G16.1-Skip frequency 1	0.00\%		
G16.2-Skip bandwidth 1	Off		
G16.3-Skip frequency 2	0.00 \%		
G16.4-Skip bandwidth 2	Off		
G16.5-Skip frequency 3	0.00%		-
G16.6-Skip bandwidth 3	Off		-
G16.7-Skip frequency 4	0.00 \%		-
G16.8-Skip bandwidth 4	Off		
G17: Brake			
G17.1-DC brake time	Off		
G17.2-DC brake current level	0 \%		
G17.3-DC break on delay	Off		
G17.4-Heating current	Off		
G17.5-Dynamic brake	No		

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G19: Fine Tuning - G19.1: IGBT Control			
G19.1.1-Control type	Asynchronous		
G19.1.1a-Asynchronous control	V/Hz		
G19.1.1a.2-Vectorial control	PMC Open loop speed		
G19.1.1b-Synchronous control	PMSM		
G19.1.1b.2-Perm Mag Sync Mot	V/Hz		
G19.1.3-PID Vout	No		
G19.1.6-Auto Tuning	No		
G19.1.7-Overmodulation	Off		
G19.1.8-Pewave	Yes		
G19.1.9-Switching frequency	4000 Hz		
G19: Fine Tuning - G19.2: Motor Load			
G19.2.1-Minimum flux level	100%		
G19.2.2-Boost voltage	0.0 \%		
G19.2.3-Boost current	0.0%		
G19.2.4-Slip compensation	No		
G19.2.5-Current limit factor	0.0 \%		
G19.2.6-Initial frequency	0.0 \%		
G19.2.7-Damping	2 \%		
G19.2.8-Reg bus voltage	800 V		
G19.2.9-Boost Band	100.00 \%		
G19.2.10-Flux control	Proportional Torque		
G19.2.11-Maximum Flux	100.00\%		
G19.2.12-Q Reference	0.00\%		
G19: Fine Tuning - G19.3: Motor model			
G19.3.1-R stator	0.1 mOhms	-	迷
G19.3.2-R rotor	0.1 mOhms		
G19.3.3-L magnetization	0.1 mH		
G19.3.3-B.E.F (kV/krpm)	0.000		
G19.3.4-L leakage stator	0.00 mH	-	-
G19.3.4-L Stator D axis	0.00 mH	-	-
G19.3.5-L leakage rotor	0.00 mH		
G19.3.5-L Stator Q axis	0.00 mH		
G19.3.6-Field weakening	90.0 \%		

G19: Fine Tuning - G19.2: Motor Load

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G19.3.7-Temperature coef R	20.0 \%		
G19.3.8-Flux tuning	2.0 \%		
G19.3.9-Params online estim	No		
G19: Fine Tuning - G19.4: PID Control			
G19.4.1-Kp speed	10.0 \%		
G19.4.2-Ki speed	10.0 \%		
G19.4.3-Kp torque	100.0 \%		
G19.4.4-Ki torque	10.0 \%		
G19.4.5-Kp I	10.0 \%		
G19.4.6-Kil	15.0 \%		
G19.4.7-Kp Sensorless	50.0 \%		
G19.4.8-Ki Sensorless	50.0 \%		
G20: Serial Communication- G20.1: Modbus RTU			
G20.1.1-Display baudrate	921600 bps baud/s		
G20.1.2-Modbus address	10		
G20.1.3-Modbus baudrate	$9600 \mathrm{bps} \mathrm{baud} / \mathrm{s}$		
G20.1.4-Modbus parity	None		
G20.1.5-Communication timeout	Off		

G20: Serial Communication- G20.6: Custom Modbus configuration		
G20.6.1-Custom modbus map address 1	3584	
G20.6.2-Custom modbus map address 2	2002	
G20.6.3-Custom modbus map address 3	2006	
G20.6.4-Custom modbus map address 4	2009	
G20.6.5-Custom modbus map address 5	2007	
G20.6.6-Custom modbus map address 6	2004	
G20.6.7-Custom modbus map address 7	2005	
G20.6.8-Custom modbus map address 8	2008	
G20.6.9-Custom modbus map address 9	2034	
G20.6.10-Custom modbus map address 10	2000	
G20.6.11-Custom modbus map address 11	2038	
G20.6.12-Custom modbus map address 12	2039	
G20.6.13-Custom modbus map address 13	2080	
G20.6.14-Custom modbus map address 14	2081	
G20.6.15-Custom modbus map address 15	2061	

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G20.6.16-Custom modbus map address 16	2064		
G20.6.17-Custom modbus map address 17	3585		
G20.6.18-Custom modbus map address 18	3569		
G20.6.19-Custom modbus map address 19	3587		
G20.6.20-Custom modbus map address 20	3588		
G20.6.21-Custom modbus map address 21	180		
G20.6.22-Custom modbus map address 22	181		
G20.6.23-Custom modbus map address 23	223		
G20.6.24-Custom modbus map address 24	220		
G20.6.25-Custom modbus map address 25	400		
G20.6.26-Custom modbus map address 26	401		
G20.6.27-Custom modbus map address 27	50		
G20.6.28-Custom modbus map address 28	53		
G20.6.29-Custom modbus map address 29	70		
G20.6.30-Custom modbus map address 30	404		
G20.6.31-Custom modbus map address 31	408		
G20.6.32-Custom modbus map address 32	416		
G20.6.33 to G20.6.1.20-Custom Modbus addresses 33 to 120	0		
G20: Serial Communication - G20.6: Custom Modbus values			
G20.7.1 to G20.7.1.20-Values of custom Modbus registers 1 to 120	0		
G21: Networks - G21.2: TCP Client			
G21.2.1-Client TCP timeout	1000s		
G21.2.2-Client TCP retries	1		
G23: Expansion - G23.2: Input/Output			
G23.2.1-IO digital A status	Off		
G23.2.2-IO digital A test	No		
G23.2.3-IO digital B status	Off		
G23.2.4-IO digital B test	No		
G23: Expansion - G23.3 Communications			
G23.3.1-Profinet board status	Off	-	
G23.3.2-Profinet board test	No	-	
G23.3.3-Profinet Com Error	Fault		
G23: Expansion - Others			
G23.4-Remove All Expansion Boards	No		

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
G24: Rectifier - G24.1 Rectifier configuration			

G24.1.1-Vdc ref mode Auto
G24.1.2-Vdc ref 0 V
G24.1.3-Cos phi 1.00
G24.1.4-Cos phi setting
G24.1.5-Delay off rect.
G24.1.6-Eq lin
G24.1.7-Rectifier frequency
G24.1.8-Delay start inverter
Auto
1.00

Capacitive
0 s
No
2800 Hz
Off

G24: Rectifier - G24.2 PID configuration
G24.2.1-Kp PLL
G24.2.2-Ki PLL
G24.2.3-Kp I Vdc
G24.2.4-Ki I Vdc
3.5%
10.0\%
10.0\%

G24: Rectifier - G24.3 Rectifier protection
G24.3.1-I lim rect
$1.5 \mathrm{x} \ln$
G24.3.2-I limit rect delay
G24.3.3-I imbalance
G24.3.4-I ground
10.0\%
15.0\%
10.0\%

Off s
30.0\%
30.0\%

G24: Rectifier - G24.4 LCL control

| G24.4.1-LCL filter mode | RUN | |
| :--- | :--- | :--- | :--- |
| G24.4.2-LCL filter power | 20.0% | |
| G24.4.3-LCL filter fback dlay | 60.1 s | |

G24: Rectifier - G24.5 Self - regulation

| G24.5.1-Auto max retries | Off | |
| :--- | :--- | :--- | :--- |
| G24.5.2-Auto delay | 2 s | |
| G24.5.3-Auto reset time | 15 s | |
| G24.5.4-Auto fault report | Yes | |
| G26: Fans | | |
| G26.1-Fans mode | Run | |
| G26.2-Min temperature | $47^{\circ} \mathrm{C}$ | |
| G26.3-Max temperature | $51^{\circ} \mathrm{C}$ | |
| G26.4-Power off delay | 1 min | |

24H TECHNICAL ASSISTANCE 365 DAYS A YEAR

FIND YOUR NEAREST DELEGATION POWER-ELECTRONICS.COM/CONTACT/
© invv

[^0]: Note: If all these values are not entered correctly, the SD750FR will not operate correctly. When the motor nameplate offers multiple configuration possibilities, as in case of the start-delta motor connection, ensure the correct data is entered for the appropriate configuration.

[^1]: ${ }^{1}$ CRC is only required for serial communication (RS232, RS485). It does not apply for TCP communication.

[^2]: ${ }^{2} \mathrm{CRC}$ is only required for serial communication (RS232, RS485). It does not apply for TCP communication.

