SD300

LOW VOLTAGE VARIABLE SPEED DRIVE

GETTING STARTED MANUAL

SD300

Variable Speed Drive
 Getting Started Manual

Edition: November 2017
SD30IM01DI

ABOUT THIS MANUAL

PURPOSE

This manual contains important instructions for the installation and maintenance of Power Electronics SD300 variable speed drives.

AUDIENCE

This manual is intended for qualified customers who will install, operate and maintain Power Electronics SD300 variable speed drives.

Only trained electricians may install and commission the drives.

POWER ELECTRONICS CONTACT INFORMATION

Power Electronics, S.A.
C/ Leonardo da Vinci, 24 - 26
46980 - PATERNA
SPAIN
Tel. 902402070 (Spain) • Tel. (+34) 961366557 • Fax (+34) 961318201
Email: sales@power-electronics.com
Website: www.power-electronics.com

CONTROL OF REVISIONS							
DATE	REVISION	DESCRIPTION	$	$	$02 / 05 / 2017$	A	First edition
:---	:---	:---					
$15 / 05 / 2017$	B	Accessories. Subsidiaries. Misprints corrections					
$30 / 05 / 2017$	C	Technical Characteristics. Mechanical. Installation. Maintenance					
$28 / 11 / 2017$	D	Safety Instructions, Mechanical Installation, Power Connections, Warning \& Fault Messages, Description Parameters, Modbus of Programming Communication, Configuration Register, Declaration of Conformity CE, Contact Information					

The equipment and technical documentation are periodically updated. Power Electronics reserves the right to modify all or part of the contents of this manual without previous notice. To consult the most updated information of this product, you may access our website www.power-electronics.com, where the latest version of this manual can be downloaded. The reproduction or distribution of the present manual is strictly forbidden, unless express authorization from Power Electronics.

TABLE OF CONTENTS

ABOUT THIS MANUAL 2
SAFETY INSTRUCTIONS 8

1. INTRODUCTION 14
2. CONFIGURATION TABLE \& STANDARD RATINGS 16
Configuration Table 16
Standard Ratings - 230VAC single-phase 17
Standard Ratings - 230VAC 3-phase 17
Standard ratings - 400VAC 18
3. TECHNICAL CHARACTERISTICS 20
Enhanced Sensorless Control 23
4. DIMENSIONS 25
IP20 Drives Dimensions 25
IP66 Drives Dimensions 36
5. RECEPTION, HANDLING AND TRANSPORTATION 41
Reception and Storage 41
Handling and Transportation 41
6. MECHANICAL INSTALLATION 43
Environmental Ratings 43
Drive Mounting 44
Clearances 45
Cooling 47
7. POWER CONNECTIONS 51
Basic Configuration 51
Topology 53
Power Terminals 53
Power Connection and Wiring 58
Ground Connection 61
EMC Installation Requirements 63
Protections 68
Dynamic Braking Resistors 70
8. CONTROL CONNECTION 73
Wiring Recommendations 73
Control Cables Access 74
Control Board Terminals Description 75
Control Switches 81
STO - Safe Torque Off 81
9. COMMISSIONING 84
10. MAINTENANCE 87
Cooling 87
Warnings 88
Routine Inspection 89
11. USE OF THE DISPLAY 93
12. STATUS MESSAGES 97
List of Status Messages 97
13. WARNING \& FAULT MESSAGES 98
List of Warning Messages 98
List of Fault Messages \& Troubleshooting 99
14. DESCRIPTION OF PROGRAMMING PARAMETERS 107
Group 0: Operation 107
Group 1: Drive \rightarrow dr 108
Group 2: Basic Functions $\rightarrow \mathrm{bA}$ 117
Group 3: Expanded Functions \rightarrow Ad 129
Group 4: Control Functions $\rightarrow \mathrm{Cn}$ 142
Group 5: Inputs \rightarrow In 153
Group 6: Outputs \rightarrow OU 167
Group 7: Communication Bus \rightarrow CM 176
Group 8: PID \rightarrow AP 182
Group 9: Protections $\rightarrow \mathrm{Pr}$ 189
Group 10: Second Motor \rightarrow M2 199
Group 11: PLC Sequence \rightarrow US 203
Group 12: PLC Function \rightarrow UF 205
15. MODBUS COMMUNICATION 212
Introduction 212
Supported Modbus Function Codes 216
Addressing Modes 219
Summary of Modbus Addresses 219
16. ACCESSORIES 263
Communications 264
Extension I/O 265
Conduit Kit 266
Flange Type 267
17. COMMONLY USED CONFIGURATIONS 281
Start/Stop command and speed setting from keyboard 281
Start/Stop command by keyboard and speed setting by analogue input 283
Start/Stop command by terminals and speed setting by analogue input 286
Multi-speed commands (multi-step frequencies) using P5, P6 and P7 289
Constant pressure control and automatic stop at zero level flow. 292
Speed control (up/down potentiometer) and Start/Stop commands by terminals 295
18. CONFIGURATION REGISTER 298
19. DECLARATION OF CONFORMITY CE 329

SAFETY SYMBOLS

Always follow safety instructions to prevent accidents and potential hazards from occurring.
In this manual, safety messages are classified as follows:
Identifies potentially hazardous situations where
dangerous voltage may be present, which if not avoided,
could result in minor personal injury, serious injury or
death

CAUTION

NOTICE

Identifies potentially hazardous situations, which if not avoided, could result in product damage, or minor or moderate personal injury.
Read the message and follow the instructions carefully.

Identifies important measures to take in order to prevent damage equipment and warranty lost, as well as encouraging good use and environmental practices

Other symbols used in this manual for CAUTION messages are the following:
Hot surface. Be careful and follow the instructions to avoid burns and personal injuries.

Risk of fire. Be careful and follow the instructions to prevent causing an unintentional fire.

Caution risk of electric shock. Timed discharge of stored energy. Wait for the indicated time to prevent electrical hazards.

Caution, risk of hearing damage. Wear hearing protection.

SAFETY INSTRUCTIONS

IMPORTANT!

Read carefully this manual to maximize the performance of the product and to ensure its safe use.
In order to appropriately use the drive, please, follow all instructions described in the installation manual which refer to transportation, installation, electrical connection and commissioning of the equipment.
Power Electronics accepts no responsibility or liability for partial or total damages resulting from incorrect use of equipment.
Please, pay careful attention to the following recommendations:

4 WARNING

Do not remove the cover while power supply is connected or the drive is operating. Otherwise, you may get an electric shock.

Do not run the drive with the front cover removed.
Otherwise, you may get an electric shock.

The drive does not remove the voltage from the input terminals. Before working on the drive, isolate the whole drive from the supply. If you do not remove the power supply, you may get an electric shock.

Do not remove the cover except for periodic inspections or wiring, even if the input power is not applied.
Otherwise, you get an electric shock.

Before opening the covers for wiring or periodic inspections, ensure DC voltage has been fully discharged. Check with a multimeter the following measures:

- Measure between the output power busbars U, V, W and the cabinet and check that the voltage is around 0 V .
- Measure that the DC link terminals +, - and chassis voltage are below 30VDC.

Otherwise, you may get an electric shock.

Operate the drive with dry hands.
Otherwise, you may get an electric shock.

Do not use cables with damaged insulation.
Otherwise, you may get an electric shock.

Do not subject the cables to abrasions, excessive stress, heavy loads or pinching. Otherwise, you may get an electric shock.

Do not make any insulation or voltage withstand tests on the motor while the drive is connected.

CAUTION

Install the drive on a non-flammable surface. Do not place flammable material nearby. Otherwise, a fire could occur.

Disconnect the input power if the drive is damaged. Otherwise, it could result in a secondary accident or fire.

Do not allow lint, paper, wood chips, dust, metallic chips or other foreign matter into the drive. Otherwise, a fire or accident could occur.

The inverter becomes hot during operation. Wait until it cools down before performing any actions.
Touching hot parts may result in skin burns.

Do not apply power to a damaged drive or to a drive with parts missing, even if the installation is complete.
Otherwise, you may get an electric shock.
The equipment contains internal capacitors in the rectification stage. Always check that the capacitors are discharged before performing any maintenance.

NOTICE

RECEPTION

- The SD300 are carefully tested and perfectly packed before delivering.
- In the event of transport damage, please ensure to notify the transport agency and POWER ELECTRONICS: 902402070 (International +34 961366557), or your nearest agent, within 24hrs from receiving the goods.

UNPACKING

- Make sure model and serial number of the variable speed drive are the same on the box, delivery note and unit.
- Each variable speed drive is delivered with Hardware and Software technical manuals.

RECYCLING

Equipment packaging must be recycled. Separate all different materials (plastic, paper, cardboard, wood...) and place them in the corresponding containers. Ensure waste collection is properly managed with a Non-Hazardous Waste Agent.

To guarantee health and natural environmental sources protection, the European Union has adopted the WEEE directive concerning discarded electric and electronic equipment (SEEA).

> Waste of electrical and electronic equipment (WEEE) must be collected selectively for proper environmental management.

Our products contain electronic cards, capacitors and other electronic devices that should be separated when they are no longer functional. These WEEEs should be managed accordingly with a Hazardous Waste Agent.
Power Electronics promotes good environmental practices and recommends that all its products sold outside of the European Union, once they reach the end of their life, are separated and the WEEE managed according to the particular country applicable legislation (especially: electronic cards, capacitors and other electronic devices)

If you have any questions about the electric and electronic equipment waste, please contact Power Electronics.

ELECTROMAGNETIC COMPATIBILITY (EMC)

- The drive is intended to be used in industrial environments (Second Environment). It achieves compliance with C3 category defined in IEC/EN 61800-3 standard when the installation recommendation within this manual are followed.
- Select communication and control system according to the drive EMC environment. Otherwise, systems could suffer from interferences due to a low EMS level.

SAFETY

Before operating the drive, read this manual thoroughly to gain an understanding of the unit. If any doubt exists, please contact POWER ELECTRONICS, (902 40 2070 / +34 961366557) or your nearest agent.

- Wear safety glasses when operating the drive with power applied or for when the front cover is removed.
- Handle and transport the drive following the recommendations within this manual.
- Install the drive according to the instructions within this manual and local regulations.
- Do not place heavy objects on the drive.
- Ensure that the drive is mounted vertically and keeping the minimum clearance distances.
- Do not drop the drive or subject it to impact.
- The SD300 drives contain static sensitive printed circuits boards. Use static safety procedures when handling these boards.
- Avoid installing the drive under conditions that differ from those described in the Environmental Ratings section.

CONNECTION PRECAUTIONS

- To ensure a correct operation of the drive, it is recommended to use a SCREENED CABLE for the control wiring.
- The motor cable should comply with the requirements within this manual. Due to increased leakage capacitance between conductors, the external ground fault protection threshold value should be adjusted ad hoc.
- Do not disconnect motor cables if the input power supply remains connected.
- The internal circuits of the SD300 Series will be damaged if the incoming power is connected and applied to the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).
- Do not use power factor correction capacitor banks, surge suppressors, or RFI filters on the output side of the drive. Doing so may damage these components.
- Before wiring the terminals, make sure that the inverter keypad display is turned off and the front cover is off as well. The inverter may hold a high voltage electric charge long after the power supply has been turned off.

EARTH CONNECTION

- The drive is a high frequency switching device; therefore, leakage current may flow. Ground the drive to avoid electric shock. Use caution to prevent the possibility of personal injury.
- Connect the input PE terminal only to the dedicated PE terminal of the drive. Do not use the case, nor chassis screws for grounding.
- Ground the drive chassis through the labelled terminals. Use appropriate conductors to comply with local regulations. The ground conductor should be connected first and removed last.
- Motor ground cable must be connected to the PE output terminal of the drive and not to the installation's ground. We recommend that the section of the ground conductor (PE) is equal or greater than the active conductor (U, V, W).

TRIAL RUN

- Verify all parameters before operating the drive. Alteration of parameters may be required depending on application and load.
- Always apply voltage and current signals to each terminal that are within the levels indicated in this manual. Otherwise, damage to the drive may occur.

CAPACITORS DEPLETION

If the drive has not been operated for a long time, capacitors lose their charging characteristics and are depleted. To prevent depletion, once a year run the device under no-load conditions during 30-60 minutes.

CYBER SECURITY DISCLAIMER

This product is designed to be connected to and to communicate information and data via a network interface. The customer is the sole responsible for providing and continuously ensuring a secure connection between the product and customer network or any other network (as the case may be). Customer shall establish and maintain any appropriate measures (such as but not limited to the installation of firewalls, application of authentication measures, encryption of data, installation of antivirus programs, etc) to protect the product, the network, its system and the interface against any kind of security breaches, unauthorized access, interference, intrusion, leakage and/or theft of data or information.

Power Electronics and its affiliates are not liable for damages and/or losses related to such security breaches, any unauthorized access, interference, intrusion, leakage and/or theft of data or information.

INTRODUCTION

The SD300 is a high performance general purpose AC drive. It excels in demanding heavy-duty applications that require high starting torque and precise control. The dual duty rating of the IP20 models ensures compatibility with all normal duty loads. The IP66/NEMA4X models guarantee operation even in the most severe environments. The versatile SD300 is ideal for applications in water treatment and irrigation, food and beverage, ventilation systems, materials handling, packaging systems, textiles, plastic, wood processing, in fact, any general-purpose application where apparatus and machinery needs to be automated.

Some of its outstanding features are:

- Easy-to-use, compact and robust product, offering users savings in time and space.
- \quad Space saving design with side by side mounting.
- The overall motor control features and the motor/drive protection functions limit unexpected machine downtime.
- A built-in display with keypad offers programming and operation capabilities. Remote LCD display option.
- Integrated communication port and Modbus protocol allows the SD300 to exchange data for machine/process monitoring, control and preventive maintenance.
- \quad Safe Torque Off (STO) as standard.

CONFIGURATION TABLE \& STANDARD RATINGS

Configuration Table

EXAMPLE. CODE: SD305846F

SD3		058		4		6		F	
SERIE		Drive current (Normal Duty) ${ }^{[1]}$		Drive Voltage		Protection Degree		EMC Filter	
SD3	SD300	002	2A	1	230VAC single-phase	2	IP20	F	Extended
		\ldots		2	230VAC three-phase	6	IP66	-	Standard
		069	69A	4	400VAC three-phase				

[1] Heavy duty for IP66 models.

CODIFICATION EXAMPLES:

- SD305842F SD300, 58A, 400Vac three-phase, IP20 degree of protection, EMC extended.
- SD301212 SD300, 12A, 230Vac single-phase, IP20 degree of protection.

The following figure shows an example of designation label:

SD300
SERIAL No.: 300012345B6
MODEL: SD304546
OUTPUT CURRENT: 45A
INPUT VOLTAGE: $380 / 480 \mathrm{~V} \times 3$ INPUT FREQUENCY: $50 / 60 \mathrm{~Hz}$ IP66

Type designation label (located on lateral panel)

Standard Ratings - 230VAC single-phase

Power	Power	Current	Current	EMC STANDARD		EMC EXTENDED	
ND $(\mathbf{k W})$	HD $(\mathbf{k W})$	ND (\mathbf{A})	HD (\mathbf{A})	Model	Frame	Model	Frame
0.75	0.4	3.1	2.5	SD300312	2 N	SD300312F $^{[1]}$	1 F
1.5	0.75	6.0	5.0	SD300612	3 N	SD300612F $^{[1]}$	2 F
2.2	1.5	9.6	8.0	SD300912	4 N	SD300912F $^{[1]}$	2 F
3.7	2.2	12.0	11.0	SD301212	5 N	SD301212F $^{[1]}$	3 F

[1] EMC class 2.

Standard Ratings - 230VAC 3-phase

IP20					
Power ND (kW)	Power HD (kW)	Current ND (\mathbf{A})	Current HD (\mathbf{A})	Model	Frame
0.75	0.4	3.1	2.5	SD300322	1 N
1.5	0.75	6.0	5.0	SD300622	2 N
2.2	1.5	9.6	8.0	SD300922	3 N
4	2.2	12	11	SD301222	4 N
5.5	4	18	17	SD301822	5 N
7.5	5.5	30	24	SD303022	4
11	7.5	40	32	SD304022	4
15	11	56	46	SD305622	5
22	15	69	60	SD306922	6

	IP66 (Only HD)		
Power HD (kW)	Current HD (A)	Model	Frame
0.4	2.5	SD300326	
0.75	5.0	SD300526	
1.5	8.0	SD300826	2 l
2.2	11	SD301126	
4	17	SD301726	31
5.5	24	SD302426	
7.5	32	SD303226	4 l
11	46	SD304626	5 l
15	60	SD306026	

Standard ratings - 400VAC

IP20							
Power ND (kW)	Power HD (kW)	Current ND (A)	Current HD (A)	EMC STANDARD		EMC EXTENDED	
				Model	Frame	Model	Frame
0.75	0.4	2.0	1.3	SD300242	1N	SD300242F ${ }^{[2]}$	1F
1.5	0.75	3.1	2.4	SD300342	2 N	SD300342F ${ }^{[2]}$	
2.2	1.5	5.1	4.0	SD300542	3N	SD300542F ${ }^{[2]}$	2F
4	2.2	6.9	5.5	SD300742	4 N	SD300742F ${ }^{[2]}$	
5.5	4	10	9.0	SD301042	5 N	SD301042F ${ }^{[2]}$	3F
7.5	5.5	16	12			SD301642F ${ }^{[2]}$	4
11	7.5	23	16			SD302342F ${ }^{[2]}$	
15	11	30	24			SD303042F ${ }^{[2]}$	
18.5	15	38	30			SD303842F ${ }^{[2]}$	5
22	18.5	44	39			SD304442F ${ }^{[2]}$	6
30	22	58	45			SD305842F ${ }^{[2]}$	6

[2] EMC class 3.

		IP66		
Power HD (kW)	Current HD (A)	EMC STANDARD	EMC EXTENDED	Frame
		Model	Model	
0.4	1.3	SD300146	SD300146F ${ }^{[2]}$	11
0.75	2.4	SD300246	SD300246F ${ }^{[2]}$	
1.5	4.0	SD300446	SD300446F ${ }^{[2]}$	21
2.2	5.5	SD300646	SD300646F ${ }^{[2]}$	
4	9.0	SD300946	SD300946F [2]	
5.5	12	SD301246	SD301246F ${ }^{[2]}$	31
7.5	16	SD301646	SD301646F ${ }^{[2]}$	
11	24	SD302446	SD302446F ${ }^{[2]}$	41
15	30	SD303046	SD303046F ${ }^{[2]}$	
18.5	39	SD303946	SD303946F ${ }^{[2]}$	51
22	45	SD304546	SD304546F ${ }^{[2]}$	

[2] EMC class 3.

NOTES:

- Maximum applicable capacity is indicated in the case of using a 4-pole standard motor (200 and 400V classes are based on 220 and 440 V , respectively).
- For the rated capacity, 200 and 400 V class input capacities are based on 220 and 440 V , respectively.
- The rated output current is limited depending on the setup of carrier frequency (Cn.4).
- The output voltage becomes 20~40\% lower during no-load operations to protect the drive from the impact of the motor closing and opening ($0.4 \sim 4.0 \mathrm{~kW}$ models only).
- Dual rating is supported except IP66/NEMA 4X.

TECHNICAL CHARACTERISTICS

SD300 SERIES

INPUT	Power ranges	$0.4 \mathrm{~kW}-2.2 \mathrm{~kW} 230 \mathrm{~V}$ - Single Phase 0.4 kW - 22 kW 230 V - 3 -Phase $0.4 \mathrm{~kW}-30 \mathrm{~kW} 400 \mathrm{~V}-3$-Phase
	Voltage range	$\begin{aligned} & \text { 230V: 200-240V Single Phase / 3-Phase (- } \\ & \text { 15\%/+10\%) } \\ & \text { 400V: 380V-480V 3-Phase (-15\%/+10\%) } \end{aligned}$
	EMC Filter	C2 ${ }^{[1]}$ (First environment) C3 (Second environment)
OUTPUT	Overload capacity	150% for 60 sec . (Heavy duty) 120% for 60sec. (Normal duty) ${ }^{[2]}$ 200\% for 4 sec . (Heavy Duty)
	Control Method	V/f, Slip compensation, Sensorless vector, PMSM VC ${ }^{[1]}$
	Frequency Setting Resolution	Digital command: $0.01 \mathrm{~Hz} /$ Analog command: 0.06 Hz (maximum frequency: 60 Hz)
	Frequency Accuracy	1\% of the maximum output frequency
	V/F Pattern	Linear, Quadratic, User V/F
	Output frequency	$0-400 \mathrm{~Hz}$ (Sensorless: $0-120 \mathrm{~Hz}$)
	Torque Boost	Manual/Automatic torque boost
OPERATION	Operation Mode	Keypad / Terminal / Communication option selectable
	Frequency Setting	Analog: -10~10[V], 0~10[V], 4~20[mA]/ Digital: Keypad, Pulse train input
	Operation Function	PID control, 3-wire operation, Frequency limit, Second function, Anti-forward and reverse direction rotation, Speed search, Power braking, Leakage reduction, Updown operation, DC braking, Frequency jump, Slip compensation, Automatic restart, Automatic tuning, Energy buffering, Flux braking, Fire Mode.

${ }^{[1]}$ Option external RFI filter required

SD300 SERIES

SD300 SERIES

	Alarm	Command loss trip alarm, overload alarm, normal load alarm, drive overload alarm, fan operation alarm, resistance braking rate alarm, number of corrections on rotor tuning error
	Momentary Power Loss	HD below 15 ms (ND below 8 ms): Continuous operation (To be within rated input voltage, rated output) HD above 15 ms (ND above 8 ms): Automatic restart operation enable
ENVIRONMENT	Cooling Type	Forced fan cooling structure
	Protection Degree	IP20/UL Open (Default), UL Enclosed Type 1 (Option), IP66/NEMA 4X (Option)
	Ambient Temperature	IP20: HD: -10~50 ${ }^{\circ} \mathrm{C}\left(14 \sim 122^{\circ} \mathrm{F}\right) / \mathrm{ND}:-10 \sim 40^{\circ} \mathrm{C}$ (14~104 ${ }^{\circ} \mathrm{F}$) [However, it is recommended to use load below 80% when using at $50^{\circ} \mathrm{C}$ under light load]
		IP66: HD: -10~40 ${ }^{\circ} \mathrm{C}\left(14 \sim 104^{\circ} \mathrm{F}\right)$
	Storage Temperature	$-20 \sim 65^{\circ} \mathrm{C}\left(-4 \sim 149^{\circ} \mathrm{F}\right)$
	Humidity	Relative humidity below 90\% RH (no dew formation)
	Altitude, Vibration	Below $1,000 \mathrm{~m}$, below $9.8 \mathrm{~m} / \mathrm{sec}^{2}$ (1G)
	Location	No corrosive gas, flammable gas, oil mist and dust etc. indoors (Pollution Degree 3 Environment)
	Pressure	70~106 kPa
REGULATIONS	Global certification	CE, UL, cUL, RoHS
	PCB	3C2 Conformal coating

Enhanced Sensorless Control

Sensorless Control

Starting torque of $200 \% / 0.5 \mathrm{~Hz}$ is produced and provides robust power in the low speed region.

The motor auto-tuning function is optimized to maximize motor performance.

Sensorless control

Flying Start Function

The SD300 is capable of performing quick and reliable smooth restarts. It is equipped with standstill/rotary auto-tuning.

SD30ITCC0003AI
Flying start function

DIMENSIONS

IP20 Drives Dimensions
 Frame 1N Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	3	SD300322
$380 \sim 480[\mathrm{~V}]$	3	SD300242

DIMENSIONS [mm/inch]									$\begin{aligned} & \text { WEIGHT } \\ & \text { (kg/lb) } \end{aligned}$
W1	W2	H1	H2	H3	D1	A	B	\varnothing	
$\begin{gathered} 68 \\ \left(2.7^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 61.1 \\ & \left(2.4^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 128 \\ & \left(5^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 119 \\ \left(4.7^{\prime \prime}\right) \end{gathered}$	$5\left(0,2^{\prime \prime}\right)$	$\begin{gathered} 128 \\ \left(4.8^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 3.5 \\ \left(1,4^{\prime \prime}\right) \end{gathered}$	4 (0.2")	$\begin{gathered} 4.2 \\ \left(1.65^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 0.86 \\ (1.91 b) \end{gathered}$

SD30DTD0024A
Frame 1 N dimensions

Frame 2N Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	1	SD300312
$200 \sim 240[\mathrm{~V}]$	3	SD300622
$380 \sim 480[\mathrm{~V}]$	3	SD300342

DIMENSIONS [mm/inch]									
WEIGHT									
W1	W2	H1	H2	H3	D1	A	B	\varnothing	(kg/lb)
68	61.1	128	119	$5\left(02^{\prime \prime}\right)$	128	3.5	$4\left(02^{\prime \prime}\right)$	4.2	0.86
$\left(2.7^{\prime \prime}\right)$	$\left(2.4^{\prime \prime}\right)$	$\left(5^{\prime \prime}\right)$	$\left(4.7^{\prime \prime}\right)$	$5\left(0.2^{\prime \prime}\right)$	$\left(5^{\prime \prime}\right)$	$\left(1.4^{\prime \prime}\right)$	$4(0 .)^{\prime \prime}$	$\left(1.65^{\prime \prime}\right)$	$(1.91 \mathrm{~b})$

SD30DTD0009A
Frame 2N dimensions

Frame 3N Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	1	SD300612
$200 \sim 240[\mathrm{~V}]$	3	SD300922
$380 \sim 480[\mathrm{~V}]$	3	SD300542

DIMENSIONS [mm/inch]									
WEIGHT									
W1	W2	H1	H2	H3	D1	A	B	\varnothing	(kg/lb)
100	91	128	120	4.5	130	4.5	4.5	4.5	$1.5(3.31 \mathrm{~b})$
$\left(3.9^{\prime \prime}\right)$	$\left(9.6^{\prime \prime}\right)$	$\left(5^{\prime \prime}\right)$	$\left(4.7^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(5.1^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$1.5(3)$

SD30DTD0010A
Frame 3N dimensions

Frame 4N Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	1	SD300912
$200 \sim 240[\mathrm{~V}]$	3	SD301222
$380 \sim 480[\mathrm{~V}]$	3	SD300742

DIMENSIONS [mm/inch]									
WEIGHT									
W1	W2	H1	H2	H3	D1	A	B	\varnothing	(kg/lb)
100	91	128	120	4.5	145	4.5	4.5	4.5	$1.5(3.31 \mathrm{~b})$
$\left(3.9^{\prime \prime}\right)$	$\left(9.6^{\prime \prime}\right)$	$\left(5^{\prime \prime}\right)$	$\left(4.7^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(5.7^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	

Frame 5N Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	1	SD301212
$200 \sim 240[\mathrm{~V}]$	3	SD301822
$380 \sim 480[\mathrm{~V}]$	3	SD301042

DIMENSIONS [mm/inch]									WEIGHT
W1	W2	H1	H2	H3	D1	A	B	\varnothing	(kg/b)
140	132.2	128	120.7	3.7	145	3.9	4.4	4.5	$2.7(61 \mathrm{~b})$
$\left(5.5^{\prime \prime}\right)$	$\left(5.2^{\prime \prime}\right)$	$\left(5^{\prime \prime}\right)$	$\left(4.8^{\prime \prime}\right)$	$\left(0.1^{\prime \prime}\right)$	$\left(5.7^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	

SD30DTD0012A
Frame 5N dimensions

Frame 1F Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	1	SD300312F
$380 \sim 480[\mathrm{~V}]$	3	SD300242F, SD300342F

DIMENSIONS [mm/inch]									WEIGHT (kg/b)
W1	W2	H1	H2	H3	D1	A	B	\varnothing	
$\begin{gathered} 68 \\ \left(2.7^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{gathered} 59 \\ \left(2.3^{\prime \prime}\right) \\ \hline \end{gathered}$	180(7.1	$\begin{aligned} & 170.5 \\ & \left(6.7^{\prime \prime}\right) \\ & \hline \end{aligned}$	5 (0.2")	$\begin{gathered} 130 \\ \left(5.1^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.5 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.5 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.2 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	1.2 (2.61b)

SD30DTD0013A
Frame 1F dimensions

Frame 2F Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	1	SD300612F, SD300912F
$380 \sim 480[\mathrm{~V}]$	3	SD300542F, SD300742F

DIMENSIONS [mm/inch]									WEIGHT
(kg/b)									
W1	W2	H1	H2	H3	D1	A	B	\varnothing	4.5
100	91	180	170	$5\left(0.2^{\prime \prime}\right)$	140	4.5	4.5	4.2	$1.8(41 \mathrm{~b})$
$\left(3.9^{\prime \prime}\right)$	$\left(3.6^{\prime \prime}\right)$	$\left(7.1^{\prime \prime}\right)$	$\left(6.7^{\prime \prime}\right)$		$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$		

SD30DTD0014A

Frame 2F dimensions

Frame 3F Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	1	SD301212F
$380 \sim 480[\mathrm{~V}]$	3	SD301042F

DIMENSIONS [mm/inch]									WEIGHT (kg/b)
W1	W2	H1	H2	H3	D1	A	B	\varnothing	
$\begin{aligned} & 140 \\ & \left(5.5^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 132 \\ \left(5.2^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 180 \\ \left(7.1^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 170 \\ \left(6.7^{\prime \prime}\right) \end{gathered}$	5 (0.2")	$\begin{gathered} 140 \\ \left(5.5^{\prime \prime}\right) \end{gathered}$	4 (0.2")	4 (0.2")	$\begin{gathered} 4.2 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	2.2 (4.91b)

SD30DTD0015A
Frame 3F dimensions

Frame 4 Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	3	SD303022, SD304022
$380 \sim 480[\mathrm{~V}]$	3	SD301642F, SD302342F

DIMENSIONS [mm/inch]									WEIGHT
W1	W2	H1	H2	H3	D1	A	B	\varnothing	(kg/b)
160	137	232	216.5	10.5	140	$\left(0.2^{\prime \prime}\right)$	$5\left(0.2^{\prime \prime}\right)$	-	3.3
$\left(6.3^{\prime \prime}\right)$	$\left(5.4^{4 \prime}\right)$	$\left(9.1^{\prime \prime}\right)$	$\left(8.5^{\prime \prime}\right)$	$\left(0.4^{\prime \prime}\right)$	$\left(5.5^{\prime \prime}\right)$				

SD30DTD0021A

Frame 4 dimensions

Frame 5 Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	3	SD305622
$380 \sim 480[\mathrm{~V}]$	3	SD303042F, SD303842F

DIMENSIONS [mm/inch]									WEIGHT
(kg/lb)									
W1	W2	H1	H2	H3	D1	A	B	\varnothing	
180	157	290	274	11.3	163	$5\left(0.2^{\prime \prime}\right)$	$5\left(0.2^{\prime \prime}\right)$	-	4.8
$\left(7.1^{\prime \prime}\right)$	$\left(6.2^{\prime \prime}\right)$	$\left(11.4^{\prime \prime}\right)$	$\left(10.8^{\prime \prime}\right)$	$\left(0.4^{\prime \prime}\right)$	$\left(6.4^{\prime \prime}\right)$		$(10.61 \mathrm{~b})$		

SD30DTD0022A
Frame 5 dimensions

Frame 6 Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	2	SD306922
$380 \sim 480[\mathrm{~V}]$	3	SD304442F, SD305842F

DIMENSIONS [mm/inch]									WEIGHT	
(kg/b)										
W1	W2	H1	H2	H3	D1	A	B	\varnothing		
220	193.8	350	331	13	187	$6\left(0.2^{\prime \prime}\right)$	$6\left(0.2^{\prime \prime}\right)$	-	7.5	
$\left(8.7^{\prime \prime}\right)$	$\left(7.6^{\prime \prime}\right)$	$\left(13.8^{\prime \prime}\right)$	$\left(13^{\prime \prime}\right)$	$\left(0.5^{\prime \prime}\right)$	$\left(7.4^{\prime \prime}\right)$					
$(15.41 \mathrm{~b})$										

SD30DTD0023A
Frame 6 dimensions

IP66 Drives Dimensions

Frame 1 I Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[V]$	3	SD300326, SD300526
$380 \sim 480[\mathrm{~V}]$	3	SD300146F, SD300246F

DIMENSIONS [mm/inch]											WEIGHT (kg/lb)
W1	W2	H1	H2	H3	D1	D2	A	\varnothing	T1	T2	
$\begin{gathered} 180 \\ \left(7.1^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 170 \\ \left(6.7^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 257 \\ \left(10^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 245 \\ \left(9.6^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 8.2 \\ \left(0.3^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 174 \\ \left(6.9^{\prime \prime}\right) \end{gathered}$	$\begin{array}{r} 188 \\ \left(7.4^{\prime \prime}\right) \end{array}$	$\begin{gathered} 4.5 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} \\ 4.5 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	$\begin{array}{r} 22.3 \\ \left(0.9^{\prime \prime}\right) \\ \hline \end{array}$		3.7 (8.21b)

SD30DTD0016A
Frame $1 /$ dimensions

Frame 2l Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT	
$200 \sim 240[\mathrm{~V}]$	3	SD300826, SD301726	SD301126,
$380 \sim 480[\mathrm{~V}]$	3	SD300446F, SD300946F	SD300646F,

DIMENSIONS [mm/inch]																	WEIGHT
W1	W2	H1	H2	H3	D1	D2	A	\varnothing	T1	T2	(kg/b)						
220	204	259	241	12	201	215	5.5	5.5	22.3	28.6	$5.3(121 \mathrm{~b})$						
$\left(8.7^{\prime \prime}\right)$	$\left(8^{\prime \prime}\right)$	$\left(10^{\prime \prime}\right)$	$\left(9.5^{\prime \prime}\right)$	$\left(0.5^{\prime \prime}\right)$	$\left(7.9^{\prime \prime}\right)$	$\left(8.5^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.2^{\prime \prime}\right)$	$\left(0.9^{\prime \prime}\right)$	$\left(1.1^{\prime \prime}\right)$	$5.3(1)$						

SD30DTD0017A
Frame 21 dimensions

Frame 3I Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	3	SD302426, SD303226
$380 \sim 480[\mathrm{~V}]$	3	SD301246F, SD301646F

DIMENSIONS [mm/inch]											WEIGHT (kg/lb)
W1	W2	H1	H2	H3	D1	D2	A	\varnothing	T1	T2	
$\begin{gathered} 250 \\ \left(9.8^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 232 \\ \left(9.1^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 328 \\ \left(13^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 308 \\ \left(12^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 11 \\ (0.4) \end{gathered}$	$\begin{gathered} 227 \\ \left(8.9^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 241 \\ \left(9.5^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 22.3 \\ \left(0.9^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 28.6 \\ \left(1.1^{\prime \prime}\right) \end{gathered}$	9 (19.81b)

SD30DTD0018A
Frame 3I dimensions

Frame 4l Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	3	SD304626
$380 \sim 480[\mathrm{~V}]$	3	SD302446F, SD303046F

DIMENSIONS [mm/inch]											WEIGHT (kg/lb)
W1	W2	H1	H2	H3	D1	D2	A	\varnothing	T1	T2	
$\begin{aligned} & 260 \\ & \left(10^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 229 \\ & \left(9^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 400 \\ & \left(16^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 377 \\ \left(15^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 15 \\ \left(0.6^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 246 \\ \left(9.7^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 260 \\ \left(10^{\prime \prime}\right. \end{gathered}$	$\begin{gathered} 6 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	-	$\begin{gathered} 22.3 \\ \left(0.9^{\prime \prime}\right) \\ \hline \end{gathered}$	$\begin{aligned} & 34.9 \\ & \left(1.4^{\prime \prime}\right) \end{aligned}$	9.6 (211b)

SD30DTD0019A
Frame 4I dimensions

Frame 5l Dimensions

INPUT VOLTAGE	PHASES	EQUIPMENT
$200 \sim 240[\mathrm{~V}]$	3	SD306026
$380 \sim 480[\mathrm{~V}]$	3	SD303946F, SD304546F

DIMENSIONS [mm/inch]											WEIGHT (kg/b)
W1	W2	H1	H2	H3	D1	D2	A	\varnothing	T1	T2	
$\begin{gathered} 300 \\ \left(12^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 271 \\ \left(100^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 460 \\ \left(18^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 437 \\ \left(177^{\prime}\right) \end{gathered}$	$\begin{gathered} 16 \\ \left(0.6^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 250 \\ \left(9.8^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 264 \\ \left(10^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 6 \\ \left(0.2^{\prime \prime}\right) \end{gathered}$	-	$\begin{gathered} 22.3 \\ \left(0.9^{\prime \prime}\right) \end{gathered}$	$\begin{array}{r} 44.5 \\ \left(1.8^{\prime \prime}\right) \end{array}$	12.4 (281b)

SD30DTD0020A

Frame 5I dimensions

RECEPTION, HANDLING AND TRANSPORTATION

1

CAUTION

Read carefully the following instructions to ensure correct mechanical installation.
Otherwise, the equipment can be damaged and lead to personal injuries.

Reception and Storage

The SD300 is carefully tested and perfectly packed before delivery. In the event of transport damage, please ensure that you notify the transport agency and Power Electronics: 902402070 (International +34 9613665 57) or your nearest agent, within 24 hrs from receipt of the goods.

Make sure model and serial number of the drive are the same on the delivery note and unit.

Drive should be stored in a sun and moisture protected space and with an ambient temperature between $-20^{\circ} \mathrm{C}$ and $+65^{\circ} \mathrm{C}$, 95 RH without condensation. It is recommended not stacking more than two units.

Handling and Transportation

CAUTION

Handle the equipment carefully. Otherwise, the equipment can get damaged.

SD300 is delivered horizontally in a cardboard box. Unpack the drive carefully. Do not use sharp tools as they could damage the product. After opening the package, please check the contained goods. Verify the item numbers contained within the package with the packing inventory list. Please
remove and set aside any spare parts shipped with the product. There should be no evident damage caused by vibration, dropping or moisture.

Drive unpacking

To unpack, carefully extract the drive from the box. The drive is packed with its frontal side facing up. Remove and place in its vertical standing position.

MECHANICAL INSTALLATION

CAUTION

The installation must be carried out by qualified personnel.
Otherwise, the equipment can get damaged and injuries could be sustained.

Before the installation, make sure the chosen location is suitable.
There must be enough space to fit the drive meeting the recommended clearances and ensuring that there are no obstacles impeding the cooling fans air flow.

Environmental Ratings

Power Electronics recommends following closely the instructions stated within this manual to ensure the correct operation of the drive. It is responsibility of the installer to ensure correct installation and suitable ambient conditions for the VFD. Additionally, any local regulations must be adhered to by the installer. The environmental ratings are:

- Environmental category: Indoor / Outdoor
- Pollution degree:

PD3

- Cooling type: Forced fan cooling structure. Forced cooling type: 0.4~15 kW 200V/0.4~75 kW 400V (excluding some models)
- Operation Ambient temperature: HD IP20: $-10 \sim 50^{\circ} \mathrm{C}\left(14 \sim 122^{\circ} \mathrm{F}\right)$ HD IP66: -10~40 ${ }^{\circ} \mathrm{C}\left(14 \sim 104^{\circ} \mathrm{F}\right)$ ND: -10~40 ${ }^{\circ} \mathrm{C}\left(14 \sim 104^{\circ} \mathrm{F}\right){ }^{[1]}$
No cold, no frost.
- Storage Ambient temperature: $\quad-20 \sim 65^{\circ} \mathrm{C}\left(-4 \sim 149^{\circ} \mathrm{F}\right)$
- Humidity:Relative humidity below 90% RH (no dew formation)
- Altitude / Vibration: Below 1,000m, below 9.8m/s² ${ }^{(1 G)}$
- Pressure: $\quad 70 \sim 106 \mathrm{kPa}$
[1] Power Electronics recommends to use load below 80% when using at $50^{\circ} \mathrm{C}$ under light load.

Drive Mounting

The SD300 variable speed drives are designed to be mounted on a wall or inside a panel.

The inverter can become very hot during operation. Install the inverter on a surface that is fire-resistant or flame-retardant and with sufficient clearance around the inverter to allow air to circulate. Make sure to follow the clearance recommendations in Clearances, Mechanical Installation section.

Hang the SD300 drive through the anchorages placed on the rear part of the drive on a solid wall or structure which supports the drive weight and the possible forces generated by the wiring.

Use a level to draw a horizontal line on the mounting surface and mark the fixing points. Then, drill the two upper mounting bolt holes, and then install the mounting bolts. Do not fully tighten the bolts yet.

Mount the drive using the two upper bolts, and then fully tighten the mounting bolts. Ensure that the SD300 is placed flat on the mounting surface.

SD30ITM001A
SD300 wall mounting

Note: The quantity and dimensions of the mounting brackets vary based on frame size. Please refer to section 2 to find the information that corresponds to your model.

There is an optional flange for special installations. If you have ordered this option, please refer to Flange Type section for installation instructions.

Clearances

The SD300 VFD must be installed in vertical position, and firmly fastened through the dedicated anchorages placed in the rear part of the drive that avoid any movement.

If the equipment is installed inside a cabinet, ensure that the hot air expelled from the VFD flows outside. This hot air can recirculate, and cause the drive to suffer from overheating. To guarantee a suitable ambient temperature, avoid the recirculation of air and follow the minimum clearance distances, as indicated below.

Minimum clearances

If you wish to install two or more drives in a technical room or cabinet, mount them side by side in a horizontal arrangement (do not stack one on top of the other), it is necessary to remove the top cover using a screwdriver and respect the minimum clearances in order to ensure proper cooling of the product.

Installing multiple drives

NOTICE

Remove the top cover of the drives when they are mounted in a horizontal arrangement.
Otherwise, the equipment can get damaged and the warranty will be voided.

Cooling

The heat sources inside the equipment correspond to the inverter bridge (IGBTs), rectifier bridge and the input filter ${ }^{(*)}$.

The drive has at least one cooling fan (this varies depending on the drive size) at the bottom, the hot air is then dissipated through the gratings on the top side.

SD30DTD0001A

Cooling airflow for SD300
It is possible to replace the cooling fans without dismounting the whole equipment. To do this, unscrew the screws in the fan corners and disconnect the connector.
(*) Optional elements.

NOTICE

Ensure that the technical room or cabinet has good air flow, taking into account that hot air cannot be recirculated by the drive.

Fan Air Flow

EXAMPLE. CODE: 3N Frame; 1,5kW-4

$\mathbf{3}$	\mathbf{c} N		$\mathbf{1 , 5} \mathbf{~ k W}$	-4					
Frame	Filter		Power	Voltage					
1	N	No filter type	$0,4 \mathrm{~kW}$	-1	230VAC monophase				
\ldots	F	Filter type	\ldots	-2	230VAC three-phase				
6							22 kW	-4	400VAC

- Air Flow: 2N Frame / 3N Frame / 1F Frame.

2N Frame	3N Frame	1F Frame
$0,4 \mathrm{~kW}-1$	$0,8 \mathrm{~kW}-1$	$0,4 \mathrm{~kW}-1$
$0,4 / 0,8 \mathrm{~kW}-2$	$1,5 \mathrm{~kW}-2$	$0,4 / 0,8 \mathrm{~kW}-2$
$0,4 / 0,8 \mathrm{~kW}-4$	$1,5 \mathrm{~kW}-4$	$0,4 / 0,8 \mathrm{~kW}-4$

Air flow	Max Air Flow [m3/min]	Average	0,31
		Minimum	0,28

- Air Flow: 4N Frame / 5N Frame / 2F Frame / 3F Frame.

4N Frame	5N Frame	2F Frame	3F Frame
$\mathbf{1 , 5 k W - 1}$	$2,2 \mathrm{~kW}-1$	$0,8 / 1,5 \mathrm{~kW}-1$	$2,2 \mathrm{~kW}-1$
$2,2 \mathrm{~kW}-2$	$3,7 / 4,0 \mathrm{~kW}-2$	$1,5 / 2,2 \mathrm{~kW}-2$	$3,7 / 4,0 \mathrm{~kW}-2$
$2,2 \mathrm{~kW}-4$	$3,7 / 4,0 \mathrm{~kW}-4$	$1,5 / 2,2 \mathrm{~kW}-4$	$3,7 / 4,0 \mathrm{~kW}-4$

Air flow	Max Air Flow [m3/min]	Average	0,66
		Minimum	0,64

- Air Flow: 4 Frame.

4 Frame
$5,5 / 7,5 \mathrm{~kW}-2$
$5,5 / 7,5 \mathrm{~kW}-4$

Air flow	Max Air Flow [m3/min]	0,98 (34,6 CFM)

- Air Flow: 5 Frame.

$\boldsymbol{5}$ Frame
$11 \mathrm{~kW}-2$
$11 / 15 \mathrm{~kW}-4$

Air Flow $[\mathrm{m} 3 / \mathrm{min}]$	Min.	1,45
	Rated	1,55

- Air Flow: 6 Frame.

6 Frame
$15 \mathrm{~kW}-2$
$18,5 / 22 \mathrm{~kW}-4$

Air Flow [m3/min]	Min.	2,85
	Rated	3,15

POWER CONNECTIONS

CAUTION

Read carefully the following instructions to ensure correct electrical installation.
Otherwise, the equipment could get damaged and lead to personal injuries.

Basic Configuration

Appropriate safety equipment must be used and the unit properly connected in order to guarantee correct operation. A drive which is incorrectly installed or set up can result in system malfunction, component damage or a reduced lifespan. You must read this manual thoroughly before proceeding.

Use a power supply with a voltage range
compatible with the selected drive.
SD300 drives are available for TN and TT
grids, or IT grids (floating earth). Check the
serial number to ensure the correct drive
selection.

Supply

Do not connect power factor capacitors, Motor surge arrestors or RFI filters to the output side of the drive.

Topology

SD300 drive operates according to the principle of pulse-width modulation (PWM). By varying the power supply voltage and the grid frequency, it is possible to control the speed and torque of the connected induction threephase motors by means of its main components: rectifier bridge, the DC bus, inverter bridge, and power and control board.

The SD300 includes a gate drive and a control board to control the rectifier thyristor diode's bridge triggering, the inverter IGBT's bridge triggering, the soft charge, the DC bus voltage and the motor performance. In addition, the control board integrates the interface terminals such as communication ports, the digital and analogue inputs and outputs, display, etc.

Power Terminals

The available power terminals are shown in the figure below.

Location of terminals in the control board

	SIGNAL	DESCRIPTION
DC REACTOR	$\mathrm{P} 1(+)$	Connection terminal for DC reactor $\mathrm{P} 2(+)$

To access the power terminals, users have to unscrew the bottom cover as follows:

Bottom cover removal
Then, remove the power terminals plastic protection pushing sides clips as shown in the following image:

Power Terminals in Frames 1N, 2N \& 1F

Power terminals in frames $1 N, 2 N$ \& $1 F$

Power Terminals in Frames 3N, 4N \& 2F

Power terminals in frames $3 N, 4 N \& 2 F$

Power Terminals in Frames 5N \&3F

Power terminals in frames 5N \& 3F

Power Terminals in Frames 4, 5 \& 6

SD30DTP0007AI
Power terminals in frames 4, 5 \& 6

Power Connection and Wiring

The following installation recommendations are suitable for TN and TT grids. For IT grids, consult Power Electronics. Otherwise, the equipment could be damaged and the risk of injury heightened.

Any wiring or periodic inspections should be performed at least 10 minutes after disconnecting the input power. To remove the front cover, first check that the DC Link red LED is off, then remove the metallic cover and check with a multimeter the following:

- Measure between the output power busbars U, V, W and the cabinet and check that the voltage is around 0 V .
- Measure that the DC link terminals +, - and chassis voltage are below 30VDC.
Otherwise, you may get an electric shock.

The user input and output busbars are labelled according to the following diagram.

Motor cable shield should be connected to the drive and, additionally, to the general earth of the installation.
(*) The link bar should be removed when wiring the DC reactor.
SD30DTP0001AI

Power wiring connection

As standard, the input and output terminals are made of tin plated copper. If they are oxidized prior to its installation, the terminals will be poorly connected and this is a cause of overheating. To avoid this effect, clean the terminal lugs and all contact surfaces with ethanol and follow the recommended cable section.

Use insulated ring lugs when connecting the power terminals.

CAUTION
Line voltage (input supply) must never be connected to U, V and W terminals.
Incorrect connection will result in the drive being damaged.
It is necessary that the installer guarantees the correct observance of the law and the regulations that are in force in those countries or areas where this device is going to be installed.

Do not use capacitors for power factor correction, surge suppressors, or RFI filters on the output side of the drive. In doing so, the components could get damaged.

Use shielded and three-wire braided cable and ground. Do not use singlecore wires.

If the drive settings are set by default (switching frequency 3 kHz), make sure that the total cable length does not exceed ${ }^{[2]}$:

- $\quad 100 \mathrm{~m}(328 \mathrm{ft})$ for unshielded wires.
- $\quad 50 \mathrm{~m}(165 \mathrm{ft})$ for shielded wires.

NOTICE

Do not exceed the motor cable distances. Longer cables can cause reduced motor torque in low frequency applications due to the voltage drop, increase circuit susceptibility to stray capacitance which may trigger overcurrent protection devices or result in a malfunction of the equipment connected to the drive.
${ }^{[2]}$ For other switching frequencies, lengths may vary:
Voltage drop is calculated by using the following formula:
Voltage $\operatorname{Drop}(V)=[\sqrt{ } 3 \times$ cable resistance $(\mathrm{m} \Omega / \mathrm{m}) \times$ cable length $(\mathrm{m}) \times$ current(A)] / 1000
The allowed carrier frequency is:

Distance	$<50 \mathrm{~m}(165 \mathrm{ft})$	$<100 \mathrm{~m}(330 \mathrm{ft})$	$>100 \mathrm{~m}(330 \mathrm{ft})$
Allowed carrier frequency	$<15 \mathrm{kHz}$	$<5 \mathrm{kHz}$	$<2.5 \mathrm{kHz}$

The power cables must have a sufficient power rating in order to prevent overheating and voltage drops. The installer must consider the cable crosssection, cable type, routing method and the ambient conditions to select the appropriate cable. It is only permitted the use of cooper or aluminum cables.

Recommended Cable Section

Model		Screw	Torque ${ }^{[1]}$ [Kgf * cm / Nm]	Wire ${ }^{[2]}$				
		mm^{2}		AWG				
		R, S, T		U, V, W	R, S, T	U, V, W		
	0.4 kW			$\begin{gathered} 2.1 \sim 6.1 \text { / } \\ 0.2 \sim 0.6 \end{gathered}$				
230 V	0.75 kW		$\text { M3. } 5$		2	2	14	14
1-phase	1.5 kW							
	2.2 kW	M4 (1/8")	3.5		3.5	12	12	
$\begin{gathered} \text { 230V } \\ \text { 3-phase } \end{gathered}$	0.4 kW	$\begin{aligned} & \text { M3.5 } \\ & \left(1 / 8^{\prime \prime}\right) \end{aligned}$	2		2	14	14	
	0.75 kW							
	1.5 kW							
	2.2 kW							
	3.7 kW	M4 (1/8")	3.5		3.5	12	12	
	4 kW							
	5.5 kW		6		6	10	10	
	7.5 kW							
	11 kW	$\begin{gathered} \text { M5 } \\ \left(3 / 16^{\prime \prime}\right) \end{gathered}$	$\begin{array}{c\|} \hline 4.0 \sim 10.2 \mid \\ 0.4 \sim 1.0 \end{array}$	10	10	8	8	
	15 kW			16	16	6	6	
$\begin{gathered} 400 \mathrm{~V} \\ \text { 3-phase } \end{gathered}$	0.4 kW	$\begin{aligned} & \text { M3.5 } \\ & \left(1 / 8^{4}\right) \end{aligned}$	$\begin{gathered} 2.1 \sim 6.1 \text { / } \\ 0.2 \sim 0.6 \end{gathered}$	2	2	14	14	
	0.75 kW							
	1.5 kW							
	2.2 kW							
	3.7 kW	M4 (1/8")						
	4 kW							
	5.5 kW			2.5	2.5	14	14	
	7.5 kW			4	4	12	12	
	11 kW	$\begin{gathered} \text { M5 } \\ \left(3 / 16^{\prime \prime}\right) \end{gathered}$	$\begin{array}{\|c\|} \hline 4.0 \sim 10.2 \mid \\ 0.4 \sim 1.0 \end{array}$					
	15 kW			6	6	10	10	
	18.5 kW			10	10	8	8	
	22 kW							

[1] Use only the specified torque on the screws, otherwise damage could occur. Loose screws can cause overheating and damage.
[2] Wires must permanently support 600 V and $\mathrm{T}^{\mathrm{a}}>75^{\circ} \mathrm{C}$.

Ground Connection

Before connecting the power conductors, make sure that the chassis of the drive and the adjoining cabinets are connected to ground through the dedicated (PE) terminals. The PE terminals are located in the bottom part of the drive and labelled with the appropriate ground connection.

SD30DTP0003AI
PE terminals location
Motor chassis grounding must be connected to the drive. In other words, connect the motor's ground conductor to the PE output terminal of the drive and not to the installation's ground. We recommend that the cross section of the motor's ground conductor (PE) should have at least the cross section of the active conductor (U, V, W). Additionally, it should be installed following the recommendations indicated in section "Power Connection and wiring".

When connecting the earth, ensure that all connected terminal lugs are securely tightened and protected from mechanical forces. Check the recommended tightening torque in Recommended Cable Section, Power Connection section.

For safety reasons, it is essential to measure the grounding resistance of the installation. This must be established before the first start up of the plant and with the drive disconnected.

The installer is responsible of providing the adequate amount, type and cross section grounding conductor alongside the characteristics of the drive used and the plant, in order to minimize the grounding resistance, which must comply with local and national regulations.

EMC Installation Requirements

Introduction

The EMC European Directive defines electromagnetic compatibility as the capability of an apparatus, an industrial plant, or a system to work satisfactorily in the electromagnetic environment, without at the same time causing electromagnetic disturbances in the apparatus, industrial plant or systems present in the same environment.

The Electromagnetic Compatibility (EMC) depends on two main characteristics of the equipment: Electromagnetic Interference (EMI) and Electromagnetic Susceptibility (EMS). The EMC standards aims to ensure that all the electrical equipment that could operate simultaneously in the same environment are compatible. This means that the interference immunity of all the devices is greater than the interference emission of all the devices within the same environment.

The EMC requirements for Power Drive System (PDS) are defined in IEC/EN 61800-3 standard that is included in the Declaration of conformity CE enclosed. In the European Union, EN61800-3 standard takes priority over all generic standards. The PDS in the context of this standard comprises the drive converter, the motor cables and the motor. Therefore, the installer as the ultimate responsible must follow the installation instructions given within this manual.

Depending on the location of the drive, the standards define four categories distributed in two environments.

- First Environment: Domestic installations. It also includes premises directly connected to a low-voltage power supply network without an intermediate transformer which supplies buildings used for domestic purposes such as shopping malls, cinemas, hospitals...
- Second environment: Industrial installations. Second Environment includes all plants other than those directly connected to the public low-voltage network which supplies buildings used for domestic purposes, e.g. factories and those other premises supplied by their own dedicated transformer.

MEDIUM VOLTAGE DISTRIBUTION NETWORK

Environment definition

The two environments are divided in four categories C 1 to C 4 that are summarized in the following table.

	FIRST ENVIRONMENT		SECOND ENVIRONMENT	
	C 1	C 2	C 3	C 4
Restricted Installation [1]	NO	YES	YES	YES [2]

Notes
[1] "Restricted Installation" means that the installation and commissioning must be carried out by specialist personnel.
[2] C4 Category applies only for complex systems or when ratings are equal or above to 1000 V or 400 A wich are unable to comply with the limits of C3 Category. In these cases, C4 Category can be achieved by adjusting the equipment in situ and applying the EMC recommendations.

SD300 compliance

SD300 variable speed drives with Extended EMC have been designed for the industrial use (Second Environment). In the case of the Standard EMC equipment, an external filter must be installed to meet C3. The correct installation following the recommendations within this manual, permit to achieve compliance with C3 category defined in IEC/EN 61800-3.

Optionally, the SD300 drive with non-floating earth can be installed in residential areas (First Environment) by employing optional RFI filters that permit to achieve the C2 category.

The SD300 is not a retail unit. It is neither a plug in device nor a movable device and it is intended to be installed and commissioned by qualified personnel. However, C1 category will not be required.

The SD300 with floating earth configuration can be installed in industrial (Second Environment) IT grids. Equipment with Extended EMC comply with C3 (Second Environment). In the case of the Standard EMC equipment, an external filter must be installed to meet C3.

EMC Recommendations

To conform the EMC directive, it is necessary that these instructions be followed as closely as possible. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, inverter and motor must be made by a qualified electrical technician.

1. Check the filter rating label to ensure that the current, voltage rating and part number are correct.
2. For best results, the filter should be fitted as closely as possible to the incoming mains supply of the wiring enclousure, usually directly after the enclousures circuit breaker or supply switch.
3. The back panel of the wiring cabinet of board should be prepared for the mounting dimensions of the filter. Be sure to remove any paint etc from the mounting holes and face area of the panel to ensure the best possible earthing of the filter.
4. Mount the filter securely.
5. Connect the mains supply to the filter terminals marked LINE, connect any earth cables to the earth stud provided. Connect the filter terminals marked LOAD to the mains input of the inverter using short lengths of appropriate gauge cable.
6. Connect the motor and fit the ferrite core (output chokes) as close to the inverter as possible. Armoured or screened cable should be used with the 3 phase conductors only threaded twice through the center of the ferrite core. The earth conductor should be securely earthed at both drive and motor ends. The screen should be connected to the enclousure body via and earthed cable gland.
7. Connect any control cables as instructed in Wiring Recommendations, Control Connection section.

It is important that all lead lengths are kept as short as possible and that incoming mains and outgoing motor cables are kept well separated.

INTERNAL FILTERS
Fig 2

Connection

It is recommended the use of braided shielded motor cables to achieve compliance with C3 category. Wiring and Installation recommendations are included in sections "Power Connection and Wiring" and "Ground Connection".

In shielded cables it is recommended to connect the shield by making 360° contact in both the drive cabinet and the motor terminal box. As an example, EMC cable glands can be installed as shown in the next figure.

Correct output motor cables shield bonding

It is recommended to use shielded cable for control signals and to follow recommendations included in Wiring Recommendations section.

CAUTION

Select communication and control system according to the drive EMC environment. Otherwise, systems could suffer from interferences due to a low EMS level.

Protections

Safety Stop Function

Safe Torque Off (STO) allows the drive output to be disabled so that the drive cannot provide power or generate torque in the motor.

The Safe Torque Off function meets EN ISO 13849-1 PLd and EN 61508 SIL2 (EN60204-1, stop category 0). This feature is standard and enables compliance with current safety standards. See STO, Control Connection section for further information.

Ground Fault Protection

The drive is equipped with an internal software, the ground fault protective function protects the drive against input and output unbalanced currents. For further information, see the Programming and Software Manual.

This function is not intended to work as a safety or fire protection, so an external protection must be provided to ensure that a substantial ground fault current is promptly interrupted. The SD300 drives are compatible to operate with Type B RCDs, if it is required. The EMC filters and long motor cables increase the ground leakage currents, so the threshold response of the protection should be adjusted to suit the surrounding plant conditions. For additional information, contact with Power Electronics.

Short Circuit

The following table shows the voltage and current ratings for fuses and circuit breakers.

Motor Thermal Protection

The drive includes a motor thermal protection that, based on the motor performance parameters, mathematically calculates the thermal reservoir of the motor. When this reservoir is reduced below the limits, the drive automatically stops the motor. The thermal sensitivity is configured in the
programming parameters. For further information consult Software and programming manual.

Others

The drive can implement additional motor and drive protections such as power-loss ride through, automatic fly restart, high and low input and output voltage, pump overload and underload... For further information, consult Software and Programming manual.

Dynamic Braking Resistors

A dynamic brake controls the regenerated energy. The dynamic brake activates an IGBT to discharge the DC bus over external resistors when the DC voltage overpasses a pre-set value.

SD300 drives include a built-in dynamic brake as standard. The user only has to connect a resistor between terminals P2 and B of the power board (see Section 7).

Reference	Input voltage (V)	Drive capacity (kW)	100\% Braking		150\% Braking	
			Ω	W*	Ω	W*
SD300312, SD300312F, SD300322, SD300326	230	0.4	400	50	300	100
SD300612, SD300612F, SD300622, SD300526		0.75	200	100	150	150
SD300912, SD300912F, SD300922, SD300826		1.5	100	200	60	300
SD301212, SD301212F, SD301222, SD301126 SD30182, SD30126		2.2	60	300	50	400
SD301822, SD301726		4	40	500	33	600
SD303022, SD302426		5.5	30	700	20	800
SD304022, SD303226		7.5	20	1000	15	1200
SD305622, SD304626		11	15	1400	10	2400
SD306922, SD306026		15	11	2000	8	2400

Reference	Input voltage (V)	Drive capacity (kW)	100\% Braking		150\% Braking	
			Ω	W*	Ω	W*
$\begin{aligned} & \text { SD300242, } \\ & \text { SD300242F, } \\ & \text { SD300146, } \\ & \text { SD300146F } \end{aligned}$	400	0.4	1800	50	1200	100
$\begin{aligned} & \text { SD300342, } \\ & \text { SD300342F, } \\ & \text { SD300246, } \\ & \text { SD300246F } \end{aligned}$		0.75	900	100	600	150
SD300542, SD300542F, SD300446, SD300446F		1.5	450	200	300	300
$\begin{aligned} & \text { SD300742, } \\ & \text { SD300742F, } \\ & \text { SD300646, } \\ & \text { SD300646F } \end{aligned}$		2.2	300	300	200	400
$\begin{aligned} & \text { SD301042, } \\ & \text { SD301042F, } \\ & \text { SD300946, } \\ & \text { SD300946F } \end{aligned}$		4	200	500	130	600
$\begin{aligned} & \text { SD301642F, } \\ & \text { SD301246, } \\ & \text { SD301246F } \end{aligned}$		5.5	120	700	85	1000
$\begin{aligned} & \text { SD302342F, } \\ & \text { SD301646, } \\ & \text { SD301646F } \end{aligned}$		7.5	90	1000	60	1200
$\begin{aligned} & \text { SD303042F, } \\ & \text { SD302446, } \\ & \text { SD302446F } \end{aligned}$		11	60	1400	40	2000
$\begin{aligned} & \text { SD303842F, } \\ & \text { SD303046, } \\ & \text { SD303046F } \end{aligned}$		15	45	2000	30	2400
$\begin{aligned} & \text { SD304442F, } \\ & \text { SD303946, } \\ & \text { SD303946F } \end{aligned}$		18.5	35	2400	20	3600
$\begin{aligned} & \text { SD305842F, } \\ & \text { SD304546, } \\ & \text { SD304546F } \end{aligned}$		22	30	2800	10	3600

Notes:

- The values of the braking resistors that appear in the table are the minimum recommended values. For a customized calculation, and adjusted to your application, please contact Power Electronics.
- The braking resistor should be non-inductive.
- To connect the sensor to the drive, it is recommended to use shielded cable.
- The maximum cable length between the drive and the external braking resistor is 20 m . For other configurations, contact with Power Electronics.

CAUTION

Do not touch the braking resistor during the drive operation. It could be very hot (over $150^{\circ} \mathrm{C}$).

CONTROL CONNECTION

Wiring Recommendations

Before planning the installation, follow these recommendations. The parallel cable routing should be minimized and the distance between the control wiring and the power wiring should be maximized. It is recommended to route control cables with different voltages in separate cable racks, trays or ducts. It is recommended to use shielded twisted cable for all the data, signal or control cables that exit the variable speed drive, with the shield correctly bonded to ground. To ensure an effective shield bonding, it is recommended to include in the SD300 front metal panel of the control board, EMC shield clamps that ensure a 360° effective shield bonding.

Shield bonding

Digital signal cables must be grounded at both ends of the cable (when there is no potential difference between equipment). It is recommended to use independent shielded cables for digital and analogue signals. When using multiple analogue signals do not use common return for them. If a lowinterference is experienced (hum loops) using analogue signals disconnect the shield grounding from one of the ends. Please refer to section
"Recommended Cable Section" for wire specifications and recommended tightening.

Although the control board is insulated galvanically, for safety reasons it is recommended not to modify the wiring while the equipment is connected to the input power supply.

WARNING

Changes of control wiring or bridges should be performed after disconnecting the input power and checking, with a multimeter, that the DC Link voltage is discharged (below 30VDC). Otherwise, you may get an electric shock

Control Cables Access

The control cables must be connected to the control terminals located below the seven-segment display. Remove the terminals cover pushing on the right-side clip as follows:

SD301TM0019A 3
Terminals cover removal

Control Board Terminals Description

The control board of the drive integrates some switches and connection terminals. These connection terminals vary depending on the equipment's degree of protection.

The following figures show the control board terminals schema:

IP20 drives standard control terminals connection

IP66 drives standard control terminals connection

Digital inputs can be configured individually or collectively. Analogue inputs can be configured as comparators. For further information, please refer to the Software and Programming Manual.

Note: The frontal cover of the control terminals can be removed to facilitate ease of connection.

The following figure shows the control terminals for IP20 drives:

The following figure shows the control terminals for IP66 drives:

TB1

The following table contains the control terminals description:

SIGNAL	PIN	DESCRIPTION
DIGITAL INPUTS	P1	Configurable multi- function Input. Default value: FX.
	P2	Configurable multi- function Input. Default value: RX.
	P3	Configurable multi- function Input. Default value: BX.
	P4	Configurable multi- function Input. Default value: RST.
	P5	Configurable multi- function Input. Default value: Spd-L.
	P6 [${ }^{11}$	Configurable multi- function Input. Default value: Spd-M.
	P7 ${ }^{[1]}$	Configurable multi- function Input. Default value: Spd-H.
	CM	Common terminal for analog and digital terminal inputs and outputs.
DIGITAL OUTPUTS	Q1	Multi-function Terminal (Open-collector). 26VDC, $\leq 100 \mathrm{~mA}$. Default value: Run.
	EG	Common ground contact for an open collector (with external power source).
	24	External 24 V power source. 150 mA maximum output current.
	A1	Fault signal output. Sends out alarm signals when the inverter safety features are activated (AC $250 \mathrm{~V}<1 \mathrm{~A}, \mathrm{DC} 30 \mathrm{~V}$
	C1	- Fault condition: A1 and C1 contacts are connected (B1 and C 1 open connection).
	B1	- Normal operation: B1 and C1 contacts are connected (A1 and C1 open connection).
ANALOGUE INPUTS	VR	Power terminal used to setup or modify a frequency reference via analog voltage or current input. Max output VII: 12V / 100mA, Potentiometer 1~5k Ω.
	V1	Setup or modify a frequency reference via analog voltage input terminal. - Unipolar: $0 \sim 10 \mathrm{~V}(\max 12 \mathrm{~V})$ - Bipolar: -10~10V (max $\pm 12 \mathrm{~V})$

SIGNAL	PIN	DESCRIPTION
	12	Configurable voltage/current input using the SW2 switch. Voltage / Current Analog Input ($0 \sim 10 \mathrm{~V}$ ($\max 12 \mathrm{~V}$) / 4~20mA (max24mA, input resistance: 249)).
	TI ${ }^{[1]}$	Frequency Setting (Pulse Train) $0 \sim 32 \mathrm{kHz}$. - Low level: 0-0.8V - High Level: $3.5-12 \mathrm{~V}$ In IP66 drives, this input is shared with the P5 terminal. This terminal must be set as TI in the parameter G 5.69 to use it as a train pulse input. For more information consult the Programming and Software Manual.
ANALOGUE OUTPUTS	AO	Configurable analogue output VII ($0 \sim 10 \mathrm{~V}(\mathrm{max} 12 \mathrm{~V} / 10 \mathrm{~mA})$) $0 \sim 20 \mathrm{~mA}(\max 24 \mathrm{~mA})$).
	TO ${ }^{[1]}$	Pulse Output signals $0 \sim 32 \mathrm{kHz}$ and $0-12 \mathrm{~V}$. Use only a wire to connect this signal to the input of another SD300 drive. Do not install any resistor. In IP66 drives, this output is shared with the Q1 terminal.
RS485 COMMUNICATION	S-	Communication port RS485 with Modbus protocol up to 115200 Kbit/s.
	SG	
	S+	
STO	SC	Safe Torque Off (STO) input available by default. Used to block the drive's output in an emergency. Built-in two NC relays SA and SB. (24VDC, <25mA.) Conditions: - Normal Operation: Both the SA and SB terminals are connected to the SC terminal. - Output Block: One or both of the SA and SB terminals lose connection with the SC terminal.
	SA	
	SB	

[1] Only available in IP20 drives.

Pulse Output Signals Connection in IP66 Drives

In IP66 drives, the pulse output signal is shared with the Q1 terminal. This terminal must be set as TO in the parameter G6.33 and the next connections must be performed to use it as a train pulse output:

- Connect a $1 / 4 \mathrm{~W}, 560 \Omega$ resistor between VR and Q1 terminals.
- Connect EG and CM terminals.

Recommended Cable Section

The recommended wire characteristics are summarized in the table below.
The wire length of the safety input should not exceed 30 m .

Terminal Type	Recommended wire size [mm^{2}] (AWG)		Screw	Torque [N.m]
	No crimp-style terminal	Crimp-style terminal		
P1 - P7, CM	0.75 (18)	0.5 (20)	M2 (1/32")	$0.22 \sim 0.25$
VR				
V1				
12				
AO				
Q1				
EG				
24				
TI				
TO				
SA, SB, SC				
S+, S-, SG				
A1, B1, C1	1.0 (17)	1.5 (15)	M2.6 (3/32")	0.4
A2, C2				

Control Switches

There are four control switches, one for the PNP/NPN mode, one for the terminal resistor and two for analog signals. They are described in the table below:

SWITCH		OPTIONS	DESCRIPTION
SW1	PNP / NPN	PNP / NPN	NPN/PNP mode selection switch.
SW2	ANALOG INPUT	V/I	Analog voltage/current input terminal selection switch.
SW3	ANALOG OUTPUT	IO / VO	Analog voltage/current output terminal selection switch.
SW4	TERMINAL RESISTOR	ON / OFF	Terminating Resistor selection switch.

STO - Safe Torque Off

The STO function is defined as follows:
Power, that can cause rotation, is not applied to the motor. The frequency converter will not provide energy to the motor, which can generate torque.

For three-phase asynchronous motor, that means to stop supplying alternating three-phase power to the stator.

This function is included as standard in SD300 drives and corresponds with an Emergency Stop Category 0 according to IEC 60204-1. When the drive is running and the STO function is applied, the motor will freely stop by its own inertia.

The SD300's STO function permits to achieve two Safety Levels for the STO function. The safety integrity level SIL2 (PLe) requires the use of an external SELV/PELV 24VDC source, emergency push button, and a safety relay SIL2 certified with feedback. For safety integrity, level SIL1 (PLc) it is only required an external push button.

By using this function, cleaning, emergencies or maintenance work on nonelectrical parts of the machinery can be performed without switching off the input power supply to the drive.

Based on the study of each application and a risk assessment, the designer should define the safety function required and each safety level.

The safety input function meets EN ISO 13849-1 PLd and EN 61508 SIL2 (EN60204-1, stop category 0)

Safe input function circuit

CAUTION

The STO safety function does not disconnect the main input power and auxiliary power supply. The drive disconnects the output motor power supply. Therefore, active conductors may be present inside so do not carry out electrical maintenance tasks without isolating the drive. Otherwise, it could cause damage to the equipment and lead to injury and even death.

Do not use the STO function as a normal drive stop.
According to EN 60204-1 automatic restart is not allowed after an emergency stop. For this reason, the machine control must prevent an automatic start after emergency stop.

COMMISSIONING

CAUTION

Only qualified personnel are allowed to commission the drive. Read and follow the safety instructions on the first pages of this manual. Neglecting the safety instructions can cause injuries or even death.

Ensure that there is no voltage present in the input power terminals and no voltage can be connected to the drive inadvertently.

This chapter does not include all the tasks to be performed during commissioning, follow local and national regulations.

In order to carry out a commissioning correctly, we recommend checking the following steps:

Check the compatibility of the upstream protections (circuit breaker, fuses, etc...) that could cause an unexpected stop during the soft charge.

1

Verify that the line voltage is compatible with drive voltage range. If not, the drive could get damaged.

Connect input, PE and output power wiring, and verify that they are correctly installed and fastened.

Check that the drive protective covers are mounted.

Check control, and analogue and digital signals cables, functions (STO). Voltage free.

Check that the drive follows the remote and local speed commands.

Connect input power supply.

Verify that the display is turned on and set the drive control parameters
∇

Check line voltages with the display.

Start the drive without motor using the display key "RUN".

Check that the fans rotate smoothly and there is no obstacle reducing the cooling capacity. Verify that there are no obstructing elements that could affect equipment cooling.

Connect the motor and check its rotation direction.

Check that the drive follows the references of speed, current, etc.

MAINTENANCE

10

SD300 drives consist of advanced semiconductor devices. Temperature, humidity, vibration and deteriorated components can reduce their efficiency. To avoid any possible irregularities, we recommend making periodic inspections.

Cooling

It is possible to replace the cooling fan without dismounting the whole equipment. To do this, unscrew the screws and disconnect the connector. The following image shows the standard fan usage rate. Replacement level can be set in parameter Pr. 87.

SD30ITCC0001BI
Fan usage rate

Warnings

- Make sure to disconnect the input power while performing maintenance.
- Make sure to perform maintenance after checking the DC Link capacitor has discharged. Check that the voltage between DC terminals +, - is below DC 30V. The bus capacitors in the drive main circuit can still be charged even after the power is turned off.
- The correct output voltage of the drive can only be measured by using an RMS voltage meter. Other voltage meters, including digital voltage meters, are likely to display incorrect values caused by the high frequency PWM output voltage of the drive.

Routine Inspection

Make sure to check the following points before handling the drive:

- Installation site conditions.
- Drive cooling system conditions.
- Excessive vibrations or noise in the motor.
- Excessive overheating.
- Normal output current value on the monitor.

The following table summarizes the maintenance tasks that should be carried out monthly, annually and every two years:

	Inspection	Period			Inspection method	Criterion	Measurement instrument
			$\stackrel{\text { 㐌 }}{\stackrel{\text { ® }}{\sim}}$	$\stackrel{\text { n }}{\stackrel{n}{0}}$			
¢	AMBIENT CONDITIONS						
	Are the ambient temperature and humidity within specification?	0			Visual check	Temperature: HD IP20: $-10 \sim 50^{\circ} \mathrm{C}$ $\left(14 \sim 122^{\circ} \mathrm{F}\right) / \mathrm{HD}$ IP66: $-10 \sim 40^{\circ} \mathrm{C}$ $\left(14 \sim 104^{\circ} \mathrm{F}\right) / \mathrm{ND}:$ $-10 \sim 40^{\circ} \mathrm{C}$ $\left(14 \sim 104^{\circ} \mathrm{F}\right)$. Humidity: below 95% non- condensing.	Thermometer, Hygrometer, Recorder.
	MODULE						
	Are there any abnormal noises or oscillations?	0			Visual and audible.	There are no anomalies.	
	POWER VOLTAGE						
	Are the input and output voltages normal?	0			Measure voltage between R/S/T phases in. the terminal block.	Values are within Standard Ratings (see section 2).	Digital multimeter tester
	ALL						
	Megger test (between input / output terminals and ground terminal)		0	0	Disconnect drive and short R/S/T/ UNW terminals, and then measure from each terminal to the ground terminal using a Megger.	Above 5M	Megger type 500 V
	Is there anything loose in the device?		0	0	Tighten up all screws.	No anomaly.	
	Is there any evidence of parts overheating?		0	0	Visual inspection	No anomaly.	

Inspection site	Inspection	Period			Inspection method	Criterion	Measurement instrument
		入	㐫	- ¢			
	CONDUCTOR / CABLE						
	Is the conductor corroded? Is the cable shield damaged?		0 0		Visual check.	No anomaly.	
	TERMINAL						
	Is there any visible damage?		0		Visual check.	No anomaly.	
	CORRECT CAPACITOR						
	Have fluid leakages been observed? Is the capacitor well fastened? Are there any signs of dilation or retraction?	0 0	0		Visual check. Measure the capacitance with a proper instrument.	No anomalies. Capacitance higher than 85\% of rated capacitance.	Instrument for measuring capacity.
	CONTACTOR						
	Is there any contactor chatter? Is the contact damaged?		0 0		Audible check. Visual check.	No anomaly.	
	OPTIONAL BRAKING RESISTOR						
	Is there any damage from resistance?		0		Visual inspection.	No anomaly.	
	Check for disconnection		0		Disconnect one side and measure with a tester.	Must be within +/10% of the rated value of the resistor.	multimeter / analog tester
	OPERATING CHECK						
	Is there any imbalance between output voltage phases? Are there any errors in the display circuit after the sequence protection test?		0		Measure voltage between output terminals U, V and W.	Balanced voltage between phases.	Digital multimeter / RMS voltage meter.
			0		Test the drive output protection in short and open circuit conditions.	The circuit must work according to the sequence.	

¢	Inspection	Period			Inspection method	Criterion	Measurement instrument
		衮	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{*}}$	$\stackrel{\text { ¢ }}{\stackrel{\text { ® }}{\sim}}$			
	COOLING FANS						
	Are there any abnormal noises or oscillations? Is the cooling fan disconnected?	0	0		Disconnect the power supply (OFF) and rotate the fan manually. Check the connections.	Fan should rotate effortlessly. No anomaly.	
	MEASUREMENT						
	Is the displayed value correct?	0	0		Check the reading instrument with an external measurement.	Check the specified values and the control values.	Voltage meter / Current meter etc.
$\begin{aligned} & \text { ̀̀ } \\ & \text { ì } \end{aligned}$	ALL						
	Is there any noise or abnormal vibrations? Has any unusual smell been reported?	$\begin{aligned} & 0 \\ & 0 \end{aligned}$			Audible, sensory and visual check. Check if damages have been produced by overheating.	No anomaly.	
	INSULATION RESISTANCE						
	Megger test (between the input, output and ground terminals)			0	Disconnect the cables for terminals U/V/W and test the wiring.	Above 5M	Megger type 500 V

Note: Long life of the main components above indicated are based on a continuous operation for the stipulated load. These conditions can change according to the environment conditions.

USE OF THE DISPLAY

SD300 variable drives have a built-in seven segment display which provides intuitive data presentation, an easy navigation through the control parameters and allows storing thousands of user-customized configurations.

It has four indicator leds that supply information about the drive operational status, plus eight control keys. They are described in the table below:

KEY / LED	NAME	FUNCTION
	RUN key	Run command.
	STOP/RESET key	STOP: Stop command during operation. RESET: Reset command when a fault occurs.
	UP key	Used both to scroll up through the parameters of a group and to increase a parameter value.

KEY / LED	NAME	FUNCTION
V	DOWN key	Used both to scroll down through the parameters of a group and to decrease a parameter value.
\checkmark	Left key	Used to jump to other parameter groups or move the cursor to the left.
\rangle	Right key	Used to jump to other parameter groups or move the cursor to the right.
4	Enter key	Used to set a parameter value or to save the changed parameter value.
ESC	Escape key	Used to cancel the changes or to switch from Remote/Local if this option was previously configured.
FWD LED	Forward Run	Illuminated during forward run. LEDS flicker when a fault occurs.
REV LED	Reverse Run	Illuminated during reverse run.
RUN LED	Run	Illuminated during operation / Flickering during acceleration/deceleration.
SET LED	Setting	Illuminated during parameter setting / Flickering when the ESC key is operating as a multi-key.
Seven-segment display	Current value	Indicates operating conditions and parameter data.

The following table shows the different characters of the seven-segment display:

11	0	\%	A	$\underline{1}$	K	11	U
1	1	E	B	i	L	1	V
$\underline{7}$	2	$\stackrel{5}{2}$	C	11	M	11	W
3	3	8	D	π	N	4	X
4	4	E	E	$\xrightarrow[1]{1}$	0	$\underline{6}$	Y
5	5	F	F	F	P	\bar{Z}	Z
5	6	5	G	9	Q	-	-
7	7	H	H	1	R	-	-
8	8	1	I	5	S	-	-
9	9	$\underline{1}$	J	E	T	-	-

To learn how to switch between groups and parameters, follow the next examples:

Step | Instruction |
| :--- |
| 2 |

Binary numbers are shown in the integrated display as segment lines. " 1 " is displayed in the top part of the display and " 0 " in the bottom part. For example, " 010 " is represented as:

STATUS MESSAGES

12

List of Status Messages

Screen	Name	Description
FLT	Fault trip	The drive is in fault state
DCB	DC Brake	The SD300 has injected DC current to stop the motor.
STP	Stopping	The drive is decreasing the output frequency due to a stop order.
DCL	Decelerating	The drive is decreasing the output frequency. The motor is decreasing its speed, it is decelerating.
ACL	Accelerating	The drive is increasing the output frequency. The motor is increasing its speed, it is accelerating.
RUN	Running	The drive is operating at reference speed. The motor will keep the introduced speed as setpoint. Operating in nominal rate.
RDY	Ready	The drive is ready for commissioning.
Rem		

WARNING \& FAULT MESSAGES

List of Warning Messages

The following table summarizes the possible warning messages that may be displayed and their description.

Screen	Name	Description
OLU	Over Load	Displayed when the motor is overloaded. Operates when Pr.17 is set to 1 'YES'. To operate, set the digital output terminal or relay OU.31or OU.33 to 5 'OVERLOAD' to receive overload warning output signals.
ULU	Under Load	Displayed when the motor is underloaded. Operates when Pr.25 is set to 1 'YES'. Set the digital output terminal or relay OU.31or OU.33 to 7 'UNDERLOAD' to receive underload warning output signals.
IOLU	INV Over Load	Displayed when the overload time equivalent to 60\% of the drive overheat protection level is accumulated. Set the digital output terminal or relay OU.31or OU.33 to 6 'IOL' to receive drive overload warning output signals.
LCU	Lost Command	Lost command warning alarm occurs even with Pr.12 set to 0 'None'. The warning alarm occurs based on the condition set at Pr.13 to Pr.15. Set the digital outputterminal or relay OU.31or OU.33 to 13 'LOSTCOMMAND' to receive lost command warning output signals. If the communication settings and status are not suitable for P2P, a Lost Command alarm occurs.
FANU	Fan Warning	Displayed when an error is detected from the cooling fan while Pr.79 is set to 1 'WARN'. Set the digital output terminal or relay OU.31or OU.33 to 8
'FAN WARNING' to receive fan warning output		
signals.		

Screen	Name	Description
EFAN	Fan Exchange	An alarm occurs when the value set at Pr. 86 is above the value set at Pr.87. To receive fan exchange output signals, set the digital output terminal or relay OU.31 or OU.33 to 38 'FAN EXCHANGE'.
ECAP	CAP Exchange	An alarm occurs when the value set at Pr.63 is less than the value set at Pr.62 (the value set at Pr.61 must be 2 'Pre Diag'). To receive CAP exchange signals, set the digital output terminal or relay OU.31 or OU.33 to 36 'CAP Exchange'.
DBU	DB Warn \%ED	Displayed when the DB resistor usage rate exceeds the set value. Set the detection level at Pr.66
TRTR	Retry Tr Tune	Tr tune error warning alarm is activated when dr.9 is set to 4 'S-less1'. The warning alarm occurs when the motors rotor time constant (Tr) is either too low or too high.

List of Fault Messages \& Troubleshooting

Section List of fault messages shows a list of all possible faults. Probable causes and troubleshooting for each fault are listed in section Fault troubleshooting.

List of fault messages

SCREEN	DESCRIPTION
	The equipment is operative. No fault is present.
	Overload. The drive trips when the output current reaches the value set in parameter Pr.21, exceeding the time limit set in parameter Pr.22. The protection is operative if the parameter Pr. 20 has been set with a value different to 0 'NONE'.
	Underload. The motor is working with insufficient load. The drive trips when its current is within the values set in parameter Pr. 29 and Pr.30 exceeding the time limit set in parameter Pr. 28 . The protection will be enabled if the parameter Pr. 27 has been set with a value different to 0 'NONE'.

SCREEN	DESCRIPTION
1111 110	Inverter Overload. The drive cuts the output supply when the output current exceeds the value set in the corresponding parameters (150% for 1 minute, 200% for 3 seconds of the drive rated current). Protection is based on drive rated capacity, and may vary depending on the device capacity.
ELH	E -Thermal. The internal thermo-electronic protection determines the motor overheating. If the motor is overheated, the drive stops its output. The protection is enabled setting the parameter Pr. 40 to a value different than 0 ' $N O N E$ '.
K\%	Ground Fault. The drive trips when an earth leakage and its current exceed the internal value configured in the drive. The overload protection function will protect the drive from any ground fault caused by a small leakage resistance.
	Output Ph Loss. One of the three output phases is open. The protection will be enabled if the parameter Pr.5 is set as 1 'OUTPUT' or 3 'ALL'.
\square	Input Ph Loss One of the three input phases is open. The protection will be enabled if the parameter Pr. 5 is set as 2 'INPUT' or 3 'ALL'.
-2\%	NTC. The drive uses a NTC thermal sensor to detect temperature increases within the supply system. When this message is displayed, the thermal sensor cable may have been cut. (The drive will continue running).
$\begin{array}{ll} 51 \\ 12 & 2 \end{array}$	Overcurrent. The drive trips when the output current exceeds the 200% of the rated current value.
$\begin{array}{lll} \mathrm{H} \\ \mathrm{H} \\ \hline \end{array}$	Overvoltage. The drive trips if the DC voltage within bus exceeds the value established. This value has been established in the internal configuration during the deceleration process or when the motor regenerative energy return to the drive is excessive for the capacitors which compose the DC bus. This fault can also be caused due to a transitory overvoltage within the supply system.
$E 4 E$	External Trip. This function can be used whenever the user needs to cut the output by the use of an external trip signal. The open /closed contact use will depend on the configuration within the digital inputs (In.65-In.71) configured as 4 'EXTERNAL TRIP'. The drive cuts the motor output protecting it from the controlled situation within the terminal.

SCREEN	Short ARM. The drive trips when a short-circuit occurs in the IGBT or in the output power.		
Overheat. The drive trips if overheated caused by a damaged cooling fan or by the presence of any strange substance within the cooling system.			
Fan trip. An anomaly detecting within the cooling fan. The protection will be enabled if parameter Pr.79 is set as 0'TRIP'.			Param_Wr_Err. A problem has been detected during the writing of
:---			
a parameter by keypad.			

SCREEN	DESCRIPTION
Lost command. The drive trips due to a loss of speed set point established by the use of the control or communication terminals. ADC Error. Analog Input error. Shown upon detection of an error in the EEPROM memory or the analogue input, or when a micro-controller internal fault is detected (Watchdog-1 Err, Watchdog-2 Err).	

Fault troubleshooting

Screen	Description or possible cause	Actions
$\begin{array}{lll} 11 \\ H 12 \end{array}$	Elevated motor consumption caused by an excessive load.	Increase the motor and drive capacity.
	Load defined in parameter Pr. 21 is too low	Increase the defined value in parameter Pr. 21.
HOL	A connection problem between the motor and the load is present.	Check the connection between motor and load is correctly set.
	The load defined in parameters Pr. 29 and Pr. 30 is too low.	Increase the value defined in parameters Pr. 29 and Pr. 30.
$\begin{array}{lll} 111 \\ 112 \\ \hline \end{array}$	The load within the drive is greater than the rated value of the drive.	Increase the motor and drive capacity.
	The start torque setting is too high.	Reduce the start torque value.
ELH	Motor overheated.	Reduce load and / or operating cycle
	Load exceeds the drive capacity.	Use a more powerful drive.
	Electro-thermal protection level (ETH) too low.	Set the ETH level properly.
	Invalid selection of the drive rated power.	Select a correct drive power.
	Invalid V/f pattern setting.	Select a correct V/f pattern.

Screen	Description or possible cause	Actions
KEL	Ground leakage produced in the drive output.	Check the drive output wiring.
	The motor insulation is damaged due to heat.	Change the motor.
F\%6	Problem present in the drive output electric connection.	Check the output electric connections.
	Poor output electric distribution.	Check that the output electric distribution is correct.
$\left.\begin{array}{lll} 1 & 9 & 1 \\ 1 & 1 & 1 \end{array}\right]$	Problem present in the drive input electric connection.	Check the input electric connections.
	Bad input electric distribution.	Check that the input electric distribution is correct.
	The drive DC capacitor must be replaced.	Replace the drive DC capacitor. Contact the Technical Service.
MEL	The room temperature is over the allowed range.	Keep the installation location at room temperature within the specified limits.
	Problem present in the drive internal temperature sensor.	Contact the Technical Service.
$\begin{array}{ll} 51 \\ 12 & 2 \\ 12 \end{array}$	Acceleration / deceleration time too short compared to the load inertia.	Increase the acceleration /deceleration time.
	The load exceeds the drive rated power.	Increase the drive rated power.
	The drive attempts to start the motor while spinning.	Ensure the correct programming spin start conditions. Set the load inertia and the parameters which enable the speed search properly. Note: Adequate spin start conditions fulfilment depends on each installation.
	Ground fault or short circuit produced.	Check the output wiring.
	The mechanic brake enters too quickly.	Check the mechanic brake.
	The power circuit components overheated due to a cooling fan malfunction.	Check the cooling fan. Verify it is correctly powered and not blocked by dirt.

Screen	Description or possible cause	Actions
	Caution: Starting the drive without correcting anomalies may damage the IGBTs.	
$\begin{array}{lll} \text { HiN } \\ \text { Hin } \end{array}$	The deceleration time is too short compared to the load inertia.	Increase the deceleration time.
	Excessive energy regeneration in the drive.	Use an optional brake resistor (dynamic brake units).
	Line with High Voltage.	Check the supply line voltage.
E-12	External fault produced.	Delete the circuit fault connected by the input fault terminal configured.
¢18	Short circuit upper and lower IGBT.	Check IGBT.
	Short circuit at the drive output.	Check the wiring of the drive output circuit.
	Acceleration / deceleration time is too short compared with the inertia of the load (GD2)	Increase acceleration / deceleration time.
$\begin{aligned} & \text { M } \\ & \hline \end{aligned}$	Cooling fan damaged or foreign matter present.	Replace the cooling fans and / or remove the foreign matter.
	Fault within the cooling system.	Check the foreign matter presence.
	Excessive room temperature.	Keep the room temperature under $50^{\circ} \mathrm{C}$ or verify the drive capacity according to temperature.
	Motor overheat produced (PTC / NTC external signal) produced.	Check the motor cooling. Reduce the load and / or operating cycle.
FFira	Cooling fan damaged or foreign matter present.	Replace the cooling fans and or remove the foreign matter.
F\%	A problem occurred while editing a parameter with the numeric keyboard.	Check if the keyboard is properly inserted.
Fig	Possible pipe breakdown inhibits pressure to reach the minimum level.	Check installation pipe status.
	PID feedback sensor is not showing the correct values.	Check the PID feedback pressure sensor is measuring properly. In case it is damaged, replace it.

Screen	Description or possible cause	Actions
	The braking unit has reached a dangerous temperature.	Check the braking unit.
	No motor connected to the drive output or defective wiring.	Check the motor is correctly connected to the drive output.
The value set in parameter Pr.31 is too high.	Reduce the parameter Pr.31 value. The port 1 optional board is not connected properly.	Check the board is inserted in the expansion board slot.
	Defective optional board.	Replace the optional board for a new one.
	The internal automatic protection of optional board. several IGBTS or the drive safe stop contact have been activated (connected by the user to an external circuit). E.g.: Emergency stop.	Check if the circuit is properly wired. Check wiring and ensure that neither of both circuits is open.
	One of the digital inputs configured as 1 'DIS START' has been enabled.	Disable the digital input configured as 1 'DIS START'.

Screen	Description or possible cause	Actions
	Watchdog Error (CPU fault).	Disconnect and reconnect the power supply. If fail, contact the Power Electronics Technical Service.

DESCRIPTION OF PROGRAMMING PARAMETERS

The different parameters of the SD300 are organized in groups and are described within this section.

Use the left \langle and right $>$ arrow keys to jump from a parameter group to another. Use the up \checkmark and down $\widehat{\text { keys to navigate between the parameters }}$ of the selected group.

Please refer to section "Use of the Display", for instructions on how to modify parameter values.

Group 0: Operation

This group is only available in the integrated display. It allows performing a basic set up of the drive with its main parameters.

Screen	Description	Default value	Modbus Address		Function
			DEC	HEX	
$0.00{ }^{[1]}$	Target frequency	0.00Hz	47936	Oh1F00	Set the motor speed. See group Drive(dr), parameter 0.00 .
ACC ${ }^{[1]}$	Acceleration time	20.0s	47937	Oh1F01	See group Drive (dr), parameter ACC.
dEC ${ }^{[1]}$	Deceleration time	30.0s	47938	Oh1F02	See group Drive (dr), parameter dEC.
drv ${ }^{[1]}$	Command source	$1=$ Remote	47939	Oh1F03	See group Drive (dr), parameter drv.
Frq ${ }^{[1]}$	Frequency reference source	$0=$ Local	47940	Oh1F04	See group Drive (dr), parameter Frq.
St1 ${ }^{[1]}$	Multi-step frequency 1 speed	10.00Hz	47941	Oh1F05	See group Basic Functions (bA) parameter St1.
St2 ${ }^{[1]}$	Multi-step frequency 2 speed	20.00 Hz	47942	Oh1F06	See group Basic Functions (bA) parameter St2.

[1] Displayed when an LCD keypad is in use.

Screen	Description	Default value	Modbus Address		Function
			DEC	HEX	
St3 ${ }^{[1]}$	Multi-step speed frequency 3	30.00 Hz	47943	Oh1F07	See group Basic Functions (bA), parameter St3.
CUr	Output current	\bullet	47944	Oh1F08	These values depend on drive characteristics.
rPM	Motor revolutions per minute	-	47945	Oh1F09	
dCL	Inverter direct current voltage	-	47946	Oh1F0A	
vOL	Inverter output voltage	-	47947	Oh1F0B	
LuT	Out of order signal	\bullet	47948	Oh1FOC	
drC	Select direction rotation	-	47949	Oh1FOD	

Group 1: Drive \rightarrow dr

Screen	Description	Default value	Range	Function	Set on RUN
$\mathbf{0 . 0 0}{ }^{[1]}$	Local speed	0.00 Hz	dr.19 to dr.20	Set the motor speed value. Minimum value is set in dr.19 and the maximum value in dr.20.	YES
dr.2	Local torque	0.0%	-180.0 to 180.0%	Set the torque value of the motor.	YES
ACC ${ }^{[1]}$	Acceleration ramp	20.0 s	0.0 to 600.0 s	Set the acceleration ramp 1, in seconds. This ramp will be set according to the requirements of each process.	YES
dEC ${ }^{[1]}$	Deceleration ramp	30.0 s	0.0 to 600.0 s	Set the deceleration ramp 1, in seconds. This ramp will be set according to the requirements of each process.	YES

Screen	Description	Default value	Range			Function	Set on RUN
drv ${ }^{[1]}$	Control mode 1	$1 \text { = }$ Remote	0 to 5	Set the control mode to command the drive (Start/Stop, Reset...).			
				OPT.	DESCR.	FUNCTION	
				0	LOCAL	Drive is controlled from the keypad.	
				1	REMOTE	Commands are sent from the control terminals.	
				2	REMOTE 2	Commands are sent from the control 2 terminals.	
				3	MODBUS	The drive iscontrolled throughcommunications integrated bus,equipment.	NO
				4	COMMS	The drive control is carried out by the use of any of the optional communication boards.	
				5	PLC	The common area can be linked with the user sequence output and can be used as command.	

Screen	Description	Default value	Range			Function	Set on RUN
dr. 08	Torque reference1	$\begin{gathered} 0= \\ \text { LOCAL } \end{gathered}$	0 to 12	Select the source for torque reference.			NO
				OPT.	DESCR.	FUNCTION	
				0	LOCAL	Reference will be given by keypad and will be set in dr. 1.	
				2	V1	Reference will be introduced through the voltage analog input 1.	
				4	V2	Reference will be introduced through the voltage analog input 2.	
				5	12	Reference will be introduced through the current analog input 2.	
				6	MODBUS	The reference will be introduced Modbus. through	
				8	COMMS	The reference will be introduced through communications.	
				9	PLC	The common area can be linked with user sequence output and can be used as command.	
				12	PULSE	Reference will introduced be Pulse input.	

Screen	Description	Default value	Range			Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
dr. 13	INCH deceleration time	30.0s	$\begin{gathered} 0.0 \text { to } \\ 600.0 \mathrm{~s} \end{gathered}$	Set the time in which the drive decelerates from the maximum speed until stopping.			YES
dr. 14	Motor power	(2)	$\begin{gathered} 0.2 \mathrm{~kW} \\ 0.4 \mathrm{~kW} \\ \ldots \\ 30.0 \mathrm{~kW} \end{gathered}$	Set the motor rated power according to its nameplate.			NO
dr. 15	Torque boost	Manual	Manual Auto1 Auto2	Proportional to the initial voltage value applied to the motor in the start moment to overcome the resistive torque in heavy starts.			NO
				0	Manual	Starting voltage manual setting by the use of parameters dr. 16 y dr. 17.	
					Auto1	The drive automatically calculates the voltage to	
					Auto2	apply at the start using the motor parameters.	
dr. 16	Start torque in forward direction	+2.0\%	$\begin{aligned} & 0.0 \text { to } \\ & 15.0 \% \end{aligned}$	Set the start torque in forward direction.			NO
dr. 17	Start torque in reverse direction	+2.0\%	$\begin{aligned} & 0.0 \text { to } \\ & 15.0 \% \end{aligned}$	Set the start torque in reverse direction.			NO
dr. 18	Motor frequency	60.00 Hz	$\begin{gathered} 30.00 \text { to } \\ 400.00 \mathrm{H} \\ z \end{gathered}$	Set the base frequency (drive output frequency when running at its rated voltage) according to the motor nameplate.			NO
dr. 19	Start frequency	0.50 Hz	$\begin{gathered} 0.01 \text { to } \\ 10.00 \mathrm{~Hz} \end{gathered}$	Set the start frequency. A start frequency is a frequency at which the drive starts voltage output. The drive does not produce output voltage while the frequency reference is lower than the set frequency. However, if a deceleration stop is made while operating above the start frequency, output voltage will continue until the operation frequency reaches a full-stop (OHz).			NO

(2) This value depends on the motor setting.

Screen	Description	Default value	Range	Function				$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
dr. 20	Max speed limit	60.00 Hz	$\begin{gathered} 40.00 \text { to } \\ 400.00 \\ H z \end{gathered}$	Set upper and lower frequency limits. All frequency selections are restricted to frequencies from within the upper and lower limits. This restriction also applies when you in input a frequency reference using the keypad.				NO
dr. $21{ }^{[1]}$	$\mathrm{Hz} / \mathrm{Rpm}$ Display	Hz	$\begin{gathered} \mathrm{Hz} \\ \mathrm{Rpm} \end{gathered}$	Change the units used to display the operational speed of the drive by setting to 0 (Hz) or 1 (Rpm). This function is only available in the removable display.				YES
dr. 80	Select range	Run Freq.	0 to 17	Select ranges displayed by the drive at power input.				YES
				OPT.	DESCR.	OPT.	DESCR.	
				0	Run Freq.	9	Motor RPM	
				1	Accel. Time	10	DC Voltage	
				2	Decel. Time	11	User Sel. 1	
				3	Cmd Source	12	Out of Order	
				4	Ref. Source	13	Sel. Run Dir.	
				5	Multistep 1	14	Oupt. Curr. 2	
					Multistep 2	15	Motor2 RPM	
				7	Multistep 3	16	DC Voltage2	
				8	Oupt. Curr.	17	User Sel. 2	
dr. 81	Select monitor code	Volt V	0 to 2	Select the monitor code.				YES
				OPT.	DESCR. FU	NCTION		
				0	Volt V $\|$Sc ca ap fre m	lar con ies out lying uency or.	rol mode. Drive the control a voltage / ramp to the	
				1 P	Pot kW Cond	ntrol by p	power.	
				2	Tqkg C	ntrol by to	torque.	
dr. 89	Display changed parameters	All	All Chang	Displays all parameters that are different from the factory default values. Use this feature to track changed parameters. OPT. DESCR. FUNCTION				YES
				0	All Dis	Display all parameters. Display changed parameters.		
				1	Chang Dis pa			

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
dr. 90	ESC key function	Mov. Pos. In	0 to 2	The [ESC] key is a multi-functional key that can be configured to carry out a number of different functions.			NO
				OPT.	DESCR.	FUNCTION	
				0	Mov. Pos. In.	Move to the initial position.	
				1	JOG Key	Perform a jog operation.	
				2	Local/Rem.	Change from Local to remote control if the key has previously been configured as such.	
dr. $91{ }^{[1]}$	Eloader function	None	0 to 2	Set Eloader function.			NO
				OPT.	DESCR.	FUNCTION	
				0	None	No actions are executed.	
				1	Download	Download upgrade file.	
				2	Upload	Store drive current values.	
dr. 93	Parameter initialization	No	No All dr bA Ad Cn In OU CM AP Pr M2 run	Set parameters back to their factory value.			NO
				OPT.	DESCR.	FUNCTION	
				0	No	All parameters keep their current value.	
				1	All	Initializes all parameter groups (set to factory values).	
				2	dr	Initialize group dr.	
				3	bA	Initialize group bA.	
				4	Ad	Initialize group Ad.	
				5	Cn	Initialize group Cn.	
				6	In	Initialize group In.	
				7	OU	Initialize group OU.	
				8	CM	Initialize group CM.	
				9	AP	Initialize group AP.	
				12	Pr	Initialize group Pr.	
				13	M2	Initialize group M2.	
				16	run	Initialize group Operation.	

Screen	Description	Default value	Range	Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
dr. 94	Password register	0	$\begin{gathered} 0 \text { to } \\ 9999 \end{gathered}$	Password for 'dr. $95 \rightarrow$ Parameters lock'. It is set as Hexadecimal value. Note: To register a password for the first time: 1. In 'dr.94', press 'Ent' key twice. 2. Register the password (except ' 0 ') and press 'Ent' key (the value will blink). 3. Press 'Ent' key again to save the value and return to 'dr.94'. Note: To change the password, follow the next steps: 1. In 'dr.94', press 'Ent' key once. 2. Introduce the present password and press 'Ent' key again. 3. Introduce the new password and press 'Ent' key (the value will blink). 4. Press 'Ent' key again to save the value and return to 'dr.94'.	YES
dr. 95	Parameters lock	0	$\begin{gathered} 0 \text { to } \\ 9999 \end{gathered}$	This parameter is able to lock or unlock parameters by typing the password previously registered in 'dr. $94 \rightarrow$ Password register'. Note: To lock and unlock parameters setting, follow the next steps: 1. In 'dr. 95 ', press 'Ent' key once. The present status of parameters lock will appear (UL Unlock, L - Lock). 2. Press 'Ent' key again and introduce the password registered in 'dr.94'. 3. Press 'Ent' key and immediately, the status of the parameters lock will be changed (UL $\boldsymbol{\rightarrow}$ L, or $L \rightarrow U L$). 4. Press 'Ent' key to return to 'dr.95'.	YES
dr. 97	Software version	0	$\begin{gathered} 0 \text { to } \\ 9999 \end{gathered}$	Displays the software version. Ex: $0 x E 6=$ v2.30.	YES
dr. 98	IO Software version	0	$\begin{gathered} 0 \text { to } \\ 65535 \end{gathered}$	Displays the IO software version.	YES

Screen	Description	Default value	Range	Function	Set on RUN
dr.99	Hardware version	0	0 to 65535	Displays the hardware version.	YES

Group 2: Basic Functions \rightarrow bA

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
bA. 1	Alt Speed Ref	None	0 to 6	Select th the spee to the fol	he auxiliary d sum to th llowing tab	speed reference source for he main reference, according le:	NO
					DESCR.	FUNCTION	
				0	None	The reference will be introduced by using the keypad.	
				1	V1	Reference will be introduced through the voltage analog input 1.	
				3	V2	Reference will be introduced through the voltage analog input 2.	
				4	12	Reference will be introduced through the current analog input 2.	
				6	Pulse	Reference will be introduced through the Pulse input.	

Screen	Description	Default value	Range		Set on RUN
bA.2 ${ }^{[4]}$	Aux calculation type	M+(GA)	Adjust the equation to calculate the speed reference. In order to do this, the present reference source, the auxiliary reference (bA.1) and the gain for this reference (bA.3) are used.	Notice that options 4-7 could result in references with positive or negative sign (forward or reverse operation) even when unipolar analog inputs are used.	The following table shows the calculation for each option, where:
NO		M: Main speed reference G: Auxiliary reference gain (bA.3) A: Auxiliary reference (bA.1)			

Screen	Description	Default value	Range	Function			$\begin{array}{\|c\|} \hline \text { Set } \\ \text { on } \\ \text { RUN } \end{array}$
				Note:	comes from the pr	previous page.	
				OPT.	CALCULATION	FUNCTION	
				0	$\mathrm{M}+\left(\mathrm{G}^{*} \mathrm{~A}\right)$	$\begin{aligned} & \text { Main ref. } \\ & +(b A .3 * b A .1 \\ & * \operatorname{In} .1) \end{aligned}$	
				1	Mx(G*A)	$\begin{aligned} & \text { Main ref. } \\ & *(b A .3 * b A .1) \end{aligned}$	
				2	M/(G*A)	$\begin{aligned} & \text { Main ref. } \\ & /(b A .3 * b A .1) \end{aligned}$	
				3	$M+\left[M^{*}\left(G^{*} A\right)\right]$	Main ref. $+\{$ Main ref. * (bA. 3 * bA.1) $\}$	
				4	$\mathrm{M}+\mathrm{G}^{*} 2(\mathrm{~A}-50 \%)$	$\begin{aligned} & \text { Main ref. } \\ & +b A .3 * 2 \\ & *(b A .1-50) \\ & * \operatorname{In} .1 \end{aligned}$	
				5	Mx[G*2(A-50\%)	Main ref. * (bA. 3 * 2 * (bA. $1-50)$)	
				6	M/[G*2(A-50\%)]	$\begin{aligned} & \text { Main ref. } \\ & /(\text { bA. } 3 * 2 \\ & *(b A .1-50)) \end{aligned}$	
				7	$\begin{aligned} & \mathrm{M}+\mathrm{M}^{*} \mathrm{G}^{*} 2(\mathrm{~A}- \\ & 50 \%) \end{aligned}$	Main ref. + Main ref. * bA. 3 * 2 * (bA. 1 - 50)	
bA. $3{ }^{[2]}$	Auxiliary reference gain	1000\%	$\begin{array}{r} -200.0 \text { to } \\ 200.0 \% \\ \hline \end{array}$	Adjust configu	a gain to th ured in parameter	e auxiliary reference	YES

Screen	Description	Default value	Range	Function			Set on RUN
bA. 4	Control mode 2	1	0 to 4	Set the alternative control mode to command the drive (Start/Stop, Reset...).			NO
				OPT. D	DESCR. F	FUNCTION	
				0	LOCAL	Drive is controlled from the keypad.	
				1	REMOTE	Commands are sent from the control terminals.	
				2	REMOTE	Commands are sent from the control 2 terminals.	
				3	MODBUS	The drive is controlled through the communications bus, integrated in the equipment.	
				4	COMMS	The drive control is carried out by the use of any of the optional communication boards.	
bA. 5	Speed reference source 2	LOCAL	0 to 12	Select the alternative source for the speed and torque reference respectively.			YES
				OPT.	DESCR.	FUNCTION	
				0	LOCAL	Reference will be given by keypad and will be set in dr. 1.	
				2	V1	Reference will be introduced through the voltage analog input 1.	
				4	V2	Reference will be introduced through the voltage analog input 2.	
				5	12	Reference will be introduced through the current analog input 2.	
				6	MODBUS	The reference will be introduced through Modbus.	
				8	COMMS	The reference will be introduced through communications.	
				Note: Continues in the next page			

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
bA. 6	Alternative torque reference	LOCAL		Note: comes from the previous page.			YES
				OPT.	DESCR.	FUNCTION	
				9	PLC	The common area can be linked with user sequence output and can be used as command.	
				12	PULSE	Reference will be introduced through the Pulse input.	
bA. 7	V/F Pattern	Linear	0 to 3	Set the alternative acceleration ramp.			NO
				OPT.	DESCR.	FUNCTION	
				0	Linear	Output voltage increases and decreases at constant rate proportional to voltage/frequency (V/F) relation. Used to achieve a constant torque load regardless the frequency.	
				1	Square	Output voltage increases quadratically with a proportion of 1.5.	
				2	V/F Us	Define a customized V/F pattern.	
				3	Square2	Output voltage increases quadratically with a proportion of 2 .	

Screen	Description	Default value	Range			Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
bA. 8	Acceleration ramp type	MaxFreq	MaxFreq FrqDelta	Enables the acceleration ramp setting:			NO
				OPT.	DESCR.	FUNCTION	
				0	MaxFreq	Allows accelerating or decelerating with the same ramp based on the maximum frequency, independently from the operating frequency.	
				1	FrqDelta	Allows defining the accelerating/decelerating time which will reach the next speed reference when working at constant speed.	
bA. 9	Time scale	01s	$\begin{gathered} 0.01 \mathrm{~s} \\ 0.1 \mathrm{~s} \\ 1 \mathrm{~s} \end{gathered}$	Set the time scale for all time-related values. It is particularly useful when a more accurate Acc/Dec times are required because of load characteristics, or when the maximum time range needs to be extended.			NO
				OPT.	DESCR.	FUNCTION	
				0	0.01s	Sets 0.01 second as the minimum unit	
				1	0.1 s	Sets 0.1 second as the minimum unit.	
				2	1s	Sets 1 second as the minimum unit	
bA. 10	Input Frequency	60 Hz	$\begin{aligned} & 60 \mathrm{~Hz} \\ & 50 \mathrm{~Hz} \end{aligned}$	Set the input frequency. If the frequency changes, so do all related settings (base frequency, maximum frequency...).			NO
				OPT.	DESCR.	FUNCTION	
				0	60 Hz	Set drive frequency to 60 Hz .	
				1	50 Hz	Set drive frequency to 50Hz.	
bA. 11	Pole Number	(*)	2 to 48	Set the number of poles in the motor according to its nameplate.			NO

Screen	Description	Default value	Range	Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
bA. 12	Rated Slip	(*)	$\begin{gathered} 0 \text { to } \\ 3000 \mathrm{rpm} \end{gathered}$	When a heavy load produces a big slip during the start, configure this parameter to compensate the motor slip.	NO
bA. 13	Motor Current	(*)	$\begin{gathered} 1.0 \text { to } \\ 200.0 \mathrm{~A} \end{gathered}$	Set the motor nominal current in accordance with the nameplate.	NO
bA. 14	No load Current	${ }^{*}$)	$\begin{gathered} 0.5 \text { to } \\ 200.0 \mathrm{~A} \end{gathered}$	Set the measured current at rated frequency without load. If any difficulties are found when measuring the current without load, this setting should be between 30% and 50% of the motor nameplate rated current.	NO
bA. 15	Motor Voltage	OV	$\begin{aligned} & 180 \text { to } \\ & 480 \mathrm{~V} \end{aligned}$	Set the motor rated voltage according to its nameplate.	NO
bA. 16	Efficiency	(*)	$\begin{aligned} & 70 \text { to } \\ & 100 \% \end{aligned}$	Set the motor efficiency according to its nameplate.	NO
bA. 17	Inertia Rate	0	0 to 8	$\|$Select load inertia based on motor inertia. OPT. FUNCTION 0 Less than 10 times motor inertia 1 10 times motor inertia $2-8$ More than 10 times motor inertia	NO
bA. 18	Output power adjustment	+100	$\begin{aligned} & 70 \text { to } \\ & 130 \% \end{aligned}$	Fine adjustment of the output power calculation, increasing its value if it is lower than expected or reducing it to match the real value.	YES
bA. 19	Input voltage	380V	$\begin{aligned} & 170 \text { to } \\ & 240 \mathrm{~V} \\ & 320 \text { to } \\ & 480 \mathrm{~V} \end{aligned}$	Set the input voltage. Note: The default setting value and this parameter range will vary depending on the drive supply voltage: $\begin{aligned} & 220 \mathrm{~V} \rightarrow 220 \\ & 400 \mathrm{~V} \rightarrow 380 \end{aligned}$	YES

Screen	Description	Default value	Range	Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
bA. 21	Stator Resistor	0 (*)	(*)	Stator resistor fine setting.	NO
bA. 22	Leak Inductor	$\mathrm{OmH}\left(^{*}\right)$	(*)	Leak inductor fine setting.	NO
bA. 23	Stator Inductor	$0 \mathrm{mH}\left({ }^{*}\right)$	(*)	Inductor stator fine setting.	NO
${\underset{[5]}{b A} .24}_{[5]}$	Rotor Time Const	145ms	$\begin{gathered} 25 \mathrm{to} \\ 5000 \mathrm{~ms} \end{gathered}$	Rotor time constant fine setting.	NO
$\begin{aligned} & \text { bA. } 25 \\ & {[3]} \end{aligned}$	Stator inductance scale.	=100\%	$\begin{aligned} & 50 \text { to } \\ & 150 \% \end{aligned}$	Set stator inductance scale.	NO
$\begin{aligned} & \mathrm{bA} .26 \\ & {[3]} \end{aligned}$	Rotor time constant scale.	=100\%	$\begin{aligned} & 50 \text { to } \\ & 150 \% \end{aligned}$	Set rotor time constant scale.	NO
$\begin{aligned} & \mathrm{bA} .31 \\ & {[3]} \end{aligned}$	Regeneration inductance scale	=80\%	$\begin{aligned} & 70 \text { to } \\ & 100 \% \end{aligned}$	Set regeneration inductance scale.	NO
$\begin{aligned} & \text { bA. } 41 \\ & {[6]} \end{aligned}$	User Frequency 1	1500 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Set user frequency 1. When the output frequency reaches this value, the drive will provide the voltage set in parameter bA. 42 .	NO
${\underset{[4]}{\mathrm{bA}} .42}^{\text {an }}$	User Voltage 1	25\%	$\begin{gathered} 0 \text { to } \\ 100 \% \end{gathered}$	Set user voltage 1 . The drive will provide the frequency set in parameter when the frequency configured in bA. 41 is reached.	NO
${\underset{[4]}{\mathrm{bA}} 43}^{\mathrm{L}}$	User Frequency 2	3000 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Set user frequency 2. When the output frequency reaches this value, the drive will provide the voltage set in parameter bA. 44 .	NO
$\begin{aligned} & \mathrm{bA} .44 \\ & {[4]} \end{aligned}$	User Voltage 2	50\%	$\begin{gathered} 0 \text { to } \\ 100 \% \end{gathered}$	Set user voltage 2 . The drive will provide the frequency set in parameter when the frequency configured in bA. 43 is reached.	NO

(*) These values depend on the motor setting.
[5] These parameters will only be displayed if dr. 9 is set to 4 (S-less1).
[6] These parameters will only be displayed if bA. 7 or M2.25 are set to 2 (V/F Us).

Screen	Description	Default value	Range	Function	$\begin{array}{\|c\|} \hline \text { Set } \\ \text { on } \\ \text { RUN } \end{array}$
$\begin{aligned} & \text { bA. } 45 \\ & {[4]} \end{aligned}$	User Frequency 3	4500 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Set user frequency 3. When the output frequency reaches this value, the drive will provide the voltage set in parameter bA. 46 .	NO
$\begin{aligned} & \text { bA. } 46 \\ & {[4]} \end{aligned}$	User Voltage 3	75\%	$\begin{gathered} 0 \text { to } \\ 100 \% \end{gathered}$	Set user voltage 3 . The drive will provide the frequency set in parameter when the frequency configured in bA. 45 is reached.	NO
$\begin{aligned} & \text { bA. } 47 \\ & {[4]} \end{aligned}$	User Frequency 4	000Hz	$\begin{gathered} 0.00 \text { to } \\ \text { dr. } 20 \end{gathered}$	Set user frequency 4. When the output frequency reaches this value, the drive will provide the voltage set in parameter bA. 48 .	NO
$\begin{aligned} & \mathrm{bA} .48 \\ & {[4]} \end{aligned}$	User Voltage 4	0\%	$\begin{gathered} 0 \text { to } \\ 100 \% \end{gathered}$	Set user voltage 4. The drive will provide the frequency set in parameter when the frequency configured in bA. 47 is reached.	NO
St1 ${ }^{[1]}$	Multi- Reference1	1000\%	$\begin{gathered} 0.00 \text { to } \\ \text { dr. } 20 \end{gathered}$	The user can set multiple speed references for the drive. This will be enabled by the use of the digital inputs configured as speed multireferences. The speed applied in each situation will depend on the digital inputs that control the multireferences, which are set as SPEED-L, SPEED-M and SPEED-H. For example, with the following options:	YES
St2 ${ }^{[1]}$	MultiReference2	2000 \%			YES
St3 ${ }^{[1]}$	Multi- Reference3	3000\%			YES
$\begin{aligned} & \mathrm{bA} .53 \\ & {[7]} \end{aligned}$	Multi- Reference4	4000\%		- In. 65 ED1 = 'Speed- H ' - In. 65 ED2 = 'Speed -M' - In. 65 ED3 = 'Speed-L'	YES
$\underset{[5]}{\mathrm{bA} .54}$	Multi- Reference5	5000\%		The adjustment is carried out by assigning a speed value for every parameter within this group, from St1-St3 and bA53-bA.56.	YES
${\underset{[5]}{b A . ~} 55}_{[5]}$	Multi- Reference6	6000\%		The following table links the digital inputs configured as SPEED to the selected multireference:	YES

[7] These parameters will only be displayed if one of $\ln .65-\ln 71$ is set to SPEED-L/M/H.

Screen	Description	Default value	Range	Function					$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
$\text { bA. } 56$$[5]$	MultiReference7	6000\%		DIGITAL OUTPUT: Speed			MULTI	PARAM.	YES
				H	M	L			
				0	0	X	Multi-reference 1	St1	
				0	X	0	Multi-reference 2	St2	
				0	X	X	Multi-reference 3	St3	
				X	0	0	Multi-reference 4	bA. 53	
				X	0	X	Multi-reference 5	bA. 54	
				X	X	0	Multi-reference 6	bA. 55	
				X	X	X	Multi-reference 7	bA. 56	
				Note: 0: Inactive and X: Active.					
bA. 70	Acceleration ramp 2	20.0s	$\begin{gathered} 0.0 \text { to } \\ 600.0 \mathrm{~s} \end{gathered}$	The user can set different acceleration and deceleration ramps for the drive. In order to do this, parameters bA.70-82 must be configured and the acceleration and deceleration times entered (parameters ACC and dEC from group "Operation").					YES
bA. 71	Deceleration ramp 2	30.0s							YES
$\begin{aligned} & \mathrm{bA} .72 \\ & {[8]} \end{aligned}$	Acceleration ramp 3	20.0s		The established setting within the parameter is the time required to reach the maximum frequency value, starting from OHz (or to reduce the frequency according to the deceleration times). These ramps will be set according to the process necessities.					YES
$\begin{aligned} & \text { bA. } 73 \\ & {[6]} \end{aligned}$	Deceleration ramp 3	30.0s							YES
$\begin{aligned} & \hline \text { bA. } 74 \\ & \text { [6] } \\ & \hline \end{aligned}$	Acceleration ramp 4	20.0s							YES
$\begin{aligned} & \text { bA. } 75 \\ & {[6]} \end{aligned}$	Deceleration ramp 4	30.0s							YES
$\begin{aligned} & \hline \text { bA. } 76 \\ & {[6]} \end{aligned}$	Acceleration ramp 5	20.0s							YES

[8] These parameters will only be shown if one of parameters $\ln .65-\ln 71$ is set to ACC/DEC-B/M/H.

Ramp operation example

Group 3: Expanded Functions \rightarrow Ad

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
Ad. 1	Acceleration pattern	Linear	Linear S-curve	Set the type of acceleration and deceleration depending on the application:			NO
				OPT.	DESCR.	FUNCTION	
					Linear	The output frequency is constant and increases/ decreases linearly.	
Ad. 2	Deceleration pattern				S-curve	Used in applications which require a soft acceleration/ deceleration, such as lifting loads. The S curve index can be set from parameters Ad.3-Ad. 6 .	
Ad. $3{ }^{[9]}$	S curve start acceleration slope	40\%	$\begin{gathered} 1 \text { to } \\ 100 \% \end{gathered}$	Set accele as S curvilin acceler	the ration/decel curve. It is near relatio ration.	curve whenever the eration pattern is defined used to set the S curve tion when starting the	NO
Ad. $4{ }^{[7]}$	S curve stop acceleration slope	40\%	$\begin{gathered} 1 \text { to } \\ 100 \% \end{gathered}$	Set accele defined Curve accele	the curve ration/decele as S Curv curvilinear ration.	ve's ramp once the eleration pattern has been rve. It is used to set the S relation when ending the	NO
Ad. $5{ }^{[10]}$	S curve start deceleration slope	40\%	$\begin{gathered} 1 \text { to } \\ 100 \% \end{gathered}$	Set accele as S curvilin decele	the ration/dece curve. It is ear relati ration.	urve whenever the eration pattern is defined used to set the S curve tion when starting the	NO
Ad. $6{ }^{[8]}$	S curve stop deceleration slope	40\%	$\begin{gathered} 1 \text { to } \\ 100 \% \end{gathered}$	Set accele defined Curve decele	the curv ration/dece as S Curv curvilinear ration.	ve's ramp once the eleration pattern has been ve. It is used to set the S relation when ending the	NO

[9] These parameters will only be displayed if Ad. 1 is set to1 (S-curve).
[10] These parameters will only be displayed if Ad. 2 is set to 1 (S-curve).

Screen	Description	Default value	Range			Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
Ad. 8	Stop mode	RAMP	0 to 4	Select the drive main stop mode. This value should be adequate for each application. OPT. DESCR. FUNCTION			NO
				0	RAMP	The drive will stop applying a frequency ramp to stop the motor.	
				1	$\begin{array}{\|l\|} \hline \text { DC } \\ \text { BRAKE } \end{array}$	The drive will apply DC to stop the motor. To configure this option, see parameters from Ad. 14 to Ad. 17.	
				2	SPIN	The drive will cut the motor output supply, stopping due to inertia.	
				4	POW BRKE	The drive will stop the motor as soon as possible by controlling the regenerative energy to avoid an overvoltage fault. This option may increase or decrease the deceleration time according to the inertia of the load. Note: Do not use this option in applications with frequent acceleration / deceleration. It could cause overheating.	
Ad. 9	Allow speed inversion	None	None FWDPre v REVPrev	Invert motor speed. This function helps to prevent the motor from rotating in inverse direction. OPT. DESCR. FUNCTION			NO
				0	None	The motor can spin in both directions.	
				1	FWDPre v	Motor cannot rotate clockwise.	
				2	RevPrev	Motor cannot rotate anti clockwise.	

Screen	Description	Default value	Range	Function	Set on RUN
Ad. 10	Power-on Run	N	$\begin{gathered} \text { NO } \\ \text { YES } \end{gathered}$	This parameter allows operating the drive if once powered up the start command is already present.	YES
$\begin{aligned} & \text { Ad. } 12 \\ & \text { [11] } \end{aligned}$	Time to DC start	0.00s	$\begin{aligned} & 0.00 \text { to } \\ & 60.00 \mathrm{~s} \end{aligned}$	Set the time during which the equipment applies DC voltage before starting to accelerate when the equipment is set in DC start mode. To enable the DC start, parameter Ad. 7 must be set to 'DCSTART'.	NO
Ad. 13	Current injection DC start	50\%	$\begin{gathered} 0 \text { to } \\ 200 \% \end{gathered}$	Set the start current level when the equipment is set in DC START mode. To enable DC start option, parameter Ad. 7 must be set to 'DCSTART'.	NO
Ad. 14 [12]	Pre-DC brake time	0.10s	$\begin{aligned} & 0.00 \text { to } \\ & 60.00 \mathrm{~s} \end{aligned}$	Set the time before starting the DC Brake. Once the frequency is below the value adjusted in parameter Ad. 17 the drive will wait this time before starting the DC Brake operation.	NO
Ad. 15 [10]	DC brake time	1.00s	0.00 to 60.00s	Set the DC Brake operation time.	NO
Ad. 16 [10]	Current level DC brake	50\%	$\begin{gathered} 0 \text { to } \\ 200 \% \end{gathered}$	Set the current level which will be applied to the motor in percentage of the motor rated current during DC Brake operation.	NO
Ad. 17 [10]	Frequency start DC brake	5.00 Hz	dr. 19 to 60.00	Set the frequency value at which the drive will enable the DC brake. The DC Brake operation will start once the frequency is below this value and the time set in parameter Ad. 14 has elapsed.	NO

[11] This parameter will only be displayed if Ad. 7 is set to 1 (DCSTART).
[12] These parameters will only be displayed if Ad. 8 is set to 1 (DCBRAKE).

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
Ad. 20	Acceleration dwell frequency	5.00 Hz	$\begin{aligned} & \text { dr. } 19 \text { to } \\ & \text { dr. } 20 \end{aligned}$	During the acceleration process, the drive will pause at this frequency, keeping it constant during the time set in parameter Ad.21.			NO
Ad. 21	Acceleration dwell time	0.0s	$\begin{aligned} & 0.0 \mathrm{to} \\ & 60.0 \mathrm{~s} \end{aligned}$	During the acceleration process, this parameter allows to define during how long the drive will operate at the constant frequency set in parameter Ad. 20 .			NO
Ad. 22	Deceleration dwell frequency	5.00 Hz	$\begin{aligned} & \text { dr. } 19 \text { to } \\ & \text { dr. } 20 \end{aligned}$	During the deceleration process, the drive will pause at this frequency value, remaining constant during the time period established in parameter Ad.23.			NO
Ad. 23	Deceleration dwell time	0.0s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \mathrm{~s} \end{aligned}$	During the deceleration process, this parameter allows to set how long will the drive be operating at the constant frequency set in parameter Ad.22.			NO
Ad. 24	Use frequency limit	N	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	Enable or disable the frequency limit.			NO
				OPT.	DESCR.	FUNCTION	
					NO	Frequency limit disabled.	
					YES	Frequency limit enabled.	
$\begin{aligned} & \text { Ad. } 25 \\ & {[13]} \end{aligned}$	Frequency lower limit	0.50Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { Ad. } 26 \end{aligned}$	Set the lower frequency limit if parameter Ad. 24 is set as YES.			YES
$\begin{array}{\|l} \hline \text { Ad. } 26 \\ {[11]} \end{array}$	Frequency higher limit	$\underset{[11]}{\mathrm{dr} .20 \mathrm{~Hz}}$	$\begin{array}{\|c\|} \hline \text { Ad. } 25 \text { to } \\ \text { dr. } 20 \end{array}$	Set the upper frequency limit whenever parameter Ad. 24 is set as YES.			NO
Ad. 27	Jump frequency activation	NO	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	The user can enable or disable a band of jump frequencies to avoid resonance frequencies or other frequency types that the motor will avoid as references. The drive will pass these frequencies during the speed changes (acceleration and/or deceleration) but will not operate within these values.			NO
				OPT.	DESCR.	FUNCTION	
				0	NO	Disable the frequency jump function.	
					YES	Enable the frequency jump function.	

Screen	Description	Default value	Range	Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
$\begin{aligned} & \text { Ad. } 28 \\ & {[14]} \end{aligned}$	Lower limit jump frequency 1	10.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { Ad. } 29 \end{aligned}$	Set the frequency jump 1 lower limit.	YES
$\begin{aligned} & \text { Ad. } 29 \\ & {[12]} \end{aligned}$	Upper limit jump frequency 1	15.00 Hz	$\begin{array}{\|c} \text { Ad. } 28 \text { to } \\ \text { dr. } 20 \end{array}$	Set the frequency jump 1 upper limit.	YES
$\begin{aligned} & \text { Ad. } 30 \\ & {[12]} \end{aligned}$	Lower limit jump frequency 2	20.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { Ad. } 31 \end{aligned}$	Set the frequency jump 2 lower limit.	YES
$\begin{aligned} & \text { Ad. } 31 \\ & {[12]} \end{aligned}$	Upper limit jump frequency 2	25.00 Hz	$\begin{array}{\|c} \text { Ad. } 30 \text { to } \\ \text { dr. } 20 \end{array}$	Set the frequency jump 2 upper limit.	YES
$\begin{aligned} & \text { Ad. } 32 \\ & {[12]} \end{aligned}$	Lower limit jump frequency 3	30.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { Ad. } 33 \end{aligned}$	Set the frequency jump 3 lower limit.	YES
$\begin{aligned} & \text { Ad. } 33 \\ & {[12]} \end{aligned}$	Upper limit jump frequency 3	35.00 Hz	$\begin{array}{\|c} \text { Ad. } 32 \text { to } \\ \text { dr. } 20 \end{array}$	Set the frequency jump 3 upper limit.	YES
$\begin{aligned} & \text { Ad. } 41 \\ & \text { [15] } \end{aligned}$	Open brake current	50.0\%	$\begin{gathered} 0.0 \text { to } \\ 180.0 \% \end{gathered}$	Set the output current at which the drive will open the relay configured as 'BRCtrl'. See parameter OU.1.	NO
$\begin{aligned} & \text { Ad. } 42 \\ & {[13]} \end{aligned}$	Delay before brake opening	1.00s	$\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~s} \end{aligned}$	Once the motor current is greater than the one set in parameter Ad. 41 and the frequency reached in the motor is the same as the one set in parameter Ad.44, the drive will open the relay configured as 'BRCtrl' and will keep this speed during the time established in this parameter.	NO
$\begin{aligned} & \text { Ad. } 44 \\ & {[13]} \end{aligned}$	Brake opening forward frequency	1.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Set the brake opening frequency of the relay configured as 'BRCtrl' while the motor is accelerating in positive direction.	NO
$\begin{aligned} & \text { Ad. } 45 \\ & {[13]} \end{aligned}$	Brake opening reverse frequency	1.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Set the brake opening frequency of the relay configured as 'BRCtrl' while the motor is accelerating in negative direction.	NO

[14] These parameters will only be displayed if Ad. 27 is set to 1 (YES).
[15] These parameters will only be displayed if either 'OU. 31 u OU. 33 is set to BRCtrl.

Screen	Description	Default value	Range			Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
Ad. 64	Fan operating mode	Run	0 to 2	Choose	the fan op	perating mode.	YES
				OPT.	DESCR.	FUNCTION	
				0	During Run	The drive fans will connect with the start command and disconnect three minutes after the drive stops.	
				1	Always ON	The fans are permanently working whenever the drive is powered.	
				2	Temp Ctrl	The fan will connect when the temperature in the heat sink reaches the preset control temperature.	
Ad. 65	Save motorized potentiometer frequency	N	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	Automatically save the speed reference defined by the motorized potentiometer.			YES
				OPT. D	DESCR.	FUNCTION	
				0	NO	Speed reference is not saved.	
				1	YES	The speed reference is saved in the memory.	

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
Ad. 66	Select comparator source	None	0 to 6	The comparator source can be set according to the following table:			NO
				OPT.	DESCR. F	FUNCTION	
				0	None ${ }^{\text {Th }}$	There is no source for the comparator	
				1	V1 V be com	Voltage analog input 1 will be used as source by the comparator.	
				3	V2Ve be com	Voltage analog input 2 will be used as source by the comparator.	
				4	$12 \quad \begin{aligned} & \text { C } \\ & \text { be } \\ & \text { co }\end{aligned}$	Current analog input 2 will be used as source by the comparator.	
				6	PulsePu as co	Pulse input will be used as source by the comparator.	
Ad. 67	Output activation level comparator mode	90.00\%	$\begin{gathered} \text { Ad. } 68 \text { to } \\ 100.00 \end{gathered}$	Define selected level is adjusted See par	the level to d in param over passed d as 34 'CO rameters OU	compare with the source neter Ad.66. In case this d, one of the digital outputs OMPARAT' will enable it. U. 31 to OU. 33 .	NO
Ad. 68	Output deactivation level comparator mode	10.00\%	$\begin{aligned} & -100.00 \\ & \text { to Ad. } 67 \end{aligned}$	Define selected level is adjusted See par	the level to d in param over passed d as 34 'CO rameters	compare with the source meter Ad.66. In case this d, one of the digital outputs OMPARAT' will disable it. U. 31 a OU. 33.	NO
				Configur drive op	ure safe ope perates if it h	eration mode. With it, the has permissions to do so.	
				OPT.	DESCR.	FUNCTION	
Ad. 70	Safe operation selection	Always Enable	Always Enable DI Dependent	0	Always Enable	The drive responds to any start command without requiring further permissions.	NO
				1	DI Dependent	The drive will only operate if the digital input configured as '13 RUNEnable' is active.	

[17] These parameters will only be displayed if Ad. 70 is set to 1 (DI DEPENDENT).

\begin{tabular}{|c|c|c|c|c|c|}
\hline Screen \& Description \& Default value \& Range \& Function \& \[
\begin{gathered}
\text { Set } \\
\text { on } \\
\text { RUN }
\end{gathered}
\] \\
\hline Ad. 74 \& Enable regeneration prevention \& N \& \[
\begin{aligned}
\& N \\
\& \mathrm{~S}
\end{aligned}
\] \& Enable regeneration prevention. When this situation occurs, the drive will increase the output frequency to prevent a fault due to overvoltage in the DC link. With this parameter, the drive helps the dynamic brake unit to avoid regeneration situations when the drive operates at normal speed. \& NO \\
\hline Ad. 75 \& Regeneration prevention level \& 700V \& \[
300 \text { to }
\]
\[
800 \mathrm{~V}
\] \& \begin{tabular}{l}
Set the voltage level in the DC link voltage at which the algorithm will start increasing the speed. \\
Figure Regeneration prevention level illustrates this function. \\
Note: The default value and parameter range will vary depending on the drive supply voltage:
\[
\begin{aligned}
\& 220 \mathrm{~V} \rightarrow 300 \text { to } 400 \mathrm{~V} \\
\& 380 \mathrm{~V} \rightarrow 600 \text { to } 800 \mathrm{~V}
\end{aligned}
\]
\end{tabular} \& NO

NO

\hline $$
\begin{aligned}
& \text { Ad. } 76 \\
& {[18]}
\end{aligned}
$$ \& Compare frequency limit \& 1.00 Hz \& \[

$$
\begin{array}{|c}
0.00 \text { to } \\
10.00 \mathrm{~Hz}
\end{array}
$$
\] \& Set the alternative frequency width to be used by the algorithm when the voltage level set in parameter Ad. 75 is overcome during regeneration prevention. \& NO

\hline $$
\begin{aligned}
& \text { Ad. } 77 \\
& {[16]}
\end{aligned}
$$ \& P gain regeneration prevention \& 50.0\% \& \[

$$
\begin{aligned}
& 0.0 \text { to } \\
& 100.0 \%
\end{aligned}
$$
\] \& To prevent regeneration zone, set $P / /$ gain in the DC link voltage suppress PI controller. \& YES

\hline $$
\begin{aligned}
& \text { Ad. } 78 \\
& {[16]}
\end{aligned}
$$ \& I gain regeneration prevention \& 50.0 ms \& \[

$$
\begin{gathered}
0.0 \text { to } \\
3000.0 \mathrm{~m} \\
\mathrm{~s}
\end{gathered}
$$
\] \& Note: Press regeneration prevention does not operate during accelerations or decelerations; it only operates during constant speed motor operation. When regeneration prevention is activated, output frequency may change within the range set at Ad. 76 . \& YES

\hline
\end{tabular}

Screen	Description	Default value	Range			Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
$\begin{array}{\|l\|l\|} \hline \text { Ad. } 80 \\ {[19]} \end{array}$	Fire mode selection	None	None Fire Mode Fire Mode Test	Fire mo faults and faults w attempts equipm The drive parame multifun for Fire	de forces and rese without con s. This ent destru ive runs ter is set nction term mode is	sthe drive to ignore all minor ts and restarts with major nsidering the number of retry action is performed until uction if necessary. in Fire mode when this t to ' 1 (Fire Mode)', and the minal (In. 65-71) configured turned on.	NO
				OPT. 0 1 2	DESCR. None Fire Mode Fire Mode Test	FUNCTION Fire mode is off Fire mode enabled. When the digital input configured as 'Fire Mode', the drive will start working in this mode, at the frequency configured in Ad. 81 and the direction set in Ad. 82. The drive simulates fire mode operation for a while. Then, it stops.	
Ad. 81 [18]	Fire mode frequency	60.00 Hz	$\begin{gathered} 0.00 \text { to } \\ 60.00 \mathrm{~Hz} \end{gathered}$	Set the mode. priority frequen keyboar	frequenc The Fir over the cies, and rd.	cy for drive operation in Fire re mode frequency takes Jog frequency, Multi-step d frequency configured from	NO
				Set Fire	mode dir	direction:	
$\begin{aligned} & \text { Ad. } 82 \\ & {[18]} \end{aligned}$	Fire mode direction	Forward	Forward Reverse	OPT. 0 1	DESCR. Forward Reverse	FUNCTION Forward direction. Reverse direction.	NO

Acceleration dwell frequency

Safe operation stop

Regeneration prevention level

Group 4: Control Functions $\rightarrow \mathrm{Cn}$

Screen	Description	Default value	Range	Function	Set on RUN
Cn. 4	Modulation frequency	3.0kHz	-	Adjust motor operational noise by varying the commutation frequency in the motor output stage If the frequency is set high, it reduces operational noise from the motor, and if it is set low, the operational noise from the motor increases. Default value and range for this parameter depend on the load rate: Normal load: 2kHz (Max 5kHz). Heavy load: 3 kHz (Max 15kHz).	YES
Cn. 5	Modulation mode	Normal PWM	0 to 1	Change the modulation to reduce the heat loss and leakage current from the drive:	NO
Cn. 9	Pre-excitation time	1.00s	$\begin{aligned} & 0.00 \text { to } \\ & 60.00 \mathrm{~s} \end{aligned}$	Set the initial excitation time. Pre-excitation is used to start the operation after performing excitation up to the motor's rated flux.	NO
Cn. 10	Pre-excitation flux	100.0\%	$\begin{aligned} & 100.0 \text { to } \\ & 500.0 \% \end{aligned}$	Adjust the flux supplied during the preexcitation time set in Cn.9. The motor flux increases up to the rated flux with the time constant as shown in Figure Pre-excitation flux.	NO

| Screen | Description | Default
 value | Range | | Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | To reduce the time taken to reach the rated
 flux, a higher motor flux base value than the
 rated flux must be provided. When the
 magnetic flux reaches the rated flux, the
 provided motor flux base value is reduced. | | |
| Cn.11 | Power off
 delay | 0.00s | 0.00 to
 $60.00 s$ | After the motor stops, this parameter sets
 the time during which direct current from the
 drive is fed into the motor
 This function is illustrated in Figure Power
 off delay. | NO |

[21] Displayed when dr. 9 is set to 4 (Sless-1). This will change the initial value of Ad. 74, Torque limit, to 150%.

| Screen | Description | Default
 value | Range | Function | | Set on
 RUN |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | Select the source to introduce the speed
 limit reference. | | |

Screen	Description	Default value	Range			Function	Set on RUN
				Note: OPT.	comes fro DESCR Flying Start2	om the previous page .FUNCTION The speed search is carried out as it controls the ripple current which is generated by the counter electromotive force during no-load rotation. This mode establishes the direction of the idling motor (forward/reverse), thus the speed search function is stable regardless the direction of the idling motor and of operation command. However, since ripple current is used, the idle frequency is not accurately determined and re-acceleration may start from zero speed when the speed search is performed for the idling motor at low speed (about $10-15 \mathrm{~Hz}$, though it depends on motor characteristics).	
Cn. 71	Search mode	0000	00 to 15	Set the search mode. Adjust each bit to 0 or 1 according to the table below:			NO
				OPT.	FUNCT	ION.	
				0001	Selectio acceler	on of speed search on ation.	
				0010	Speed	search on start after fault.	
				0100	Speed fault.	search after a power supply	
				1000	Speed energiz present.	search when the drive is ed, if the start command is	

Screen	Description	Default value	Range	Function	Set on RUN
$\begin{aligned} & \mathrm{Cn} .72 \\ & {[22]} \end{aligned}$	Speed search mode current	150\%	$\begin{aligned} & 80 \text { to } \\ & 200 \% \end{aligned}$	Allows controlling the current during the speed search in percentage in relation with the motor rated current.	YES
$\begin{aligned} & \mathrm{Cn} .73 \\ & {[23]} \end{aligned}$	Speed search mode prop. gain	Depends on the value of Cn. 70	0 to 9999	Allows setting the proportional gain for the speed search. Note: The default value of this parameter depends on Cn.70: Flying Start1 $\rightarrow 100$ Flying Start2 $\rightarrow 600$	YES
$\begin{aligned} & \text { Cn. } 74 \\ & {[21]} \end{aligned}$	Speed search mode integral gain		0 to 9999	Allows setting the proportional gain for the speed search. Note: The default value of this parameter depends on Cn.70: Flying Start1 $\boldsymbol{\rightarrow} 200$ Flying Start $2 \rightarrow 1000$	YES
$\begin{aligned} & \text { Cn. } 75 \\ & {[21]} \end{aligned}$	Speed search delay	1.0s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \mathrm{~s} \end{aligned}$	Allows locking the output during an established time before proceeding with the speed search.	NO
$\underset{[21]}{\mathrm{Cn} .76}$	Speed estimator gain	100\%	$\begin{aligned} & 50 \text { to } \\ & 150 \% \end{aligned}$	Speed search estimator gain.	YES
Cn. 77	KEB Select	No	0 to 2	When the input power supply is disconnected, the drive DC link voltage decreases and a low voltage trip occurs blocking the output. A kinetic energy buffering operation uses regenerative energy generated by the motor during the blackout to maintain the DC link voltage. This extends the time for a low voltage trip to occur after a sudden power interruption. This parameter allows selecting the kinetic energy buffering operation. If 1 or 2 is selected, it controls the drive output frequency and charges the DC link (drive DC part) with energy generated from the motor. Note: Continues on the next page.	NO

[22] Displayed when any of the bits in Cn. 71 bits are set to 1 and Cn. 70 is set to 0 .
[23] Displayed when any of the bits in Cn. 71 bits are set to 1 .

Screen	Description	Default value	Range	Function			Set on RUN
				Note	mes f	the previus page.	
				OPT.	DESCR.	FUNCTION	
				0	No	General deceleration is carried out until a low voltage trip occurs.	
				1	KEB1	When the input power is lost, it charges the DC link with regenerated energy. When the input power is restored, so does normal operation from energy buffering operation to the frequency reference operation. Operation frequency acceleration is set in Cn .83 .	
				2	KEB2	When the input power is lost, it charges the DC link with regenerated energy. When the input power is restored, it changes from the energy buffering operation to the deceleration stop operation. The operation frequency deceleration time is set in dr. 4.	
Cn. 78 [24]	Initial value for KEB operation	125.0\%	$110.0 \text { to }$ 200.0%	Sets energy	e start bufferin	top points of the kinetic eration. The set values	NO
$\begin{aligned} & \text { Cn. } 79 \\ & {[22]} \end{aligned}$	Value to stop KEB operation	$\underset{[22]}{130.0 \%}$	$\begin{aligned} & \text { Cn. } 78 \text { to } \\ & 210.0 \% \end{aligned}$	mus as 1 high	based and th an the	the low voltage trip level p level (Cn.79) must be level (Cn.78).	NO

[24] Displayed when Cn. 77 is not set to 0 (NO).

Screen	Description	Default value	Range	Function	Set on RUN
$\begin{aligned} & \mathrm{Cn} .80 \\ & {[22]} \end{aligned}$	KEB proportional gain	10000	$\begin{gathered} 1 \text { to } \\ 20000 \end{gathered}$	Maintain the voltage of the DC power section during the kinetic energy buffering operation. Change the setting value when a low voltage trip occurs right after a power failure.	YES
$\begin{aligned} & \mathrm{Cn} .81 \\ & {[22]} \end{aligned}$	KEB integral gain	$500{ }^{[22]}$	$\begin{gathered} 1 \text { to } \\ 20000 \end{gathered}$	Maintain the voltage of the DC power section during the kinetic energy buffering operation. Sets the gain value to maintain the frequency during the kinetic energy buffering operation until the drive stops.	YES
$\begin{aligned} & \mathrm{Cn} .82 \\ & {[22]} \end{aligned}$	Energy buffering Slip gain	30.0	$\begin{gathered} 0 \text { to } \\ 2000.0 \% \end{gathered}$	Regulation of KEB function. Slip gain KEB.	YES
${ }_{[22]}^{\mathrm{Cn} .83}$	Energy buffering acceleration time	10.0	$\begin{gathered} 0.0 \text { to } \\ 600.0 \mathrm{~s} \end{gathered}$	Regulation of KEB function. Acceleration time KEB.	YES
$\underset{[15]}{\mathrm{Cn} .85}$	Flux proportional gain 1	370	$\begin{gathered} 100 \text { to } \\ 700 \end{gathered}$	Flux estimator proportional gain 1.	YES
$\underset{[23]}{C n .86}$	Flux proportional gain 2	0	0 to 100	Flux estimator proportional gain 2.	YES
$\underset{[23]}{\mathrm{Cn} .87}$	Flux proportional gain 3	100	0 to 500	Flux estimator proportional gain 3.	YES
$\begin{aligned} & \text { Cn. } 88 \\ & {[23]} \end{aligned}$	Flux integral gain 1	$50^{[23]}$	0 to 200	Flux estimator integral gain 1.	YES
$\begin{aligned} & \text { Cn. } 89 \\ & {[23]} \end{aligned}$	Flux integral gain 2	$50^{[24]}$	0 to 200	Flux estimator integral gain 2.	YES
$\underset{[23]}{\mathrm{Cn} .90}$	Flux integral gain 3	$50^{[24]}$	0 to 200	Flux estimator integral gain 3.	YES
$\underset{[23]}{\mathrm{Cn} .91}$	SL voltage compensation 1	20 (*)	0 to 60	Adjust output voltage compensation values for sensorless vector control.	YES

[25] Displayed when Cn. 20 is set to 1 (YES).

Screen	Description	Default value	Range	Function	Set on RUN
Cn.92 [23]	SL voltage compensation 2	20 (*)	0 to 60	- If the output frequency is higher than the base frequency during no-load operation at low speed, decrease the value of Cn.91 by decrements of 5 (10Hz or lower). If the torque is insufficient, increase Cn.93 by increments of 5.	YES
Cn.93 [23]	SL voltage compensation 3	20 (*) *	0 to 60	If the motor hunts or overcurrent trip occurs in regenerative load at low speed (10 Hz or lower), increase the value of Cn.92-93 by increments of 5 at the same time.	YES

Pre-excitation flux

Power off delay

Group 5: Inputs \rightarrow In

Screen	Description	Default value	Range	Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
In. 1	Analog input max. freq	dr. 20	$\begin{aligned} & \text { dr. } 19 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Set drive operating frequency for the maximum voltage input of the analog input.	YES
In. 2	Analog input max. torque	100.0\%	$\begin{gathered} 0.0 \text { to } \\ 200.0 \% \end{gathered}$	Reserved.	YES
In. 5	V1 Monitor	0.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 12.00 \end{aligned}$	Voltage analog input 1 (V1) visualization.	NO
In. 6	V1 polarity	0-10V	$\begin{gathered} 0-10 \mathrm{~V} \\ -1+10 \mathrm{~V} \end{gathered}$	This parameter allows setting the operation directions of the drive:	NO
In. 7	V1 filter	10ms	$\begin{gathered} 0 \text { to } \\ 10000 \mathrm{~m} \\ \mathrm{~s} \end{gathered}$	Low Pass Filter for V1. Allows setting the time response to a change produced in the speed reference, to reduce the speed fluctuation due to unstable signs or noise. Thus, the response becomes slower.	YES
In. 8	V1 minimum voltage	0.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~V} \end{aligned}$	Define the minimum voltage for the analog input 1 according to the connected sensor characteristics	YES

Screen	Description	Default value	Range	Function	Set on RUN
In. 9	V1 minimum reference	0.00\%	$\begin{gathered} 0.00 \text { to } \\ 100.00 \% \end{gathered}$	Set the speed reference corresponding to the analog input 1 minimum negative range. It corresponds to the minimum voltage level set in In.12. It is configured to introduce the speed reference through the AI. The value is a percentage of the frequency set in In.1.	YES
In. 10	V1 maximum voltage	10.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~V} \end{aligned}$	Define the maximum voltage for the analog input 1, according to the connected sensor characteristics.	YES
In. 11	V1 maximum reference	10.00\%	$\begin{gathered} 0.00 \text { to } \\ 100.00 \% \end{gathered}$	Set the speed reference corresponding to the analog input 1 minimum range. It corresponds to the minimum voltage level set in In.10. It is configured to introduce the speed reference through the V 1 analog input. The value is a percentage of In.1.	YES
$\left\lvert\, \begin{aligned} & \ln .12 \\ & {[26]} \end{aligned}\right.$	V1 minimum negative voltage	10.00 V	$\begin{array}{\|c} -10.00 \text { to } \\ 0.00 \mathrm{~V} \end{array}$	Define the negative minimum voltage for the analog input 1 , according to the connected sensor characteristics.	YES
$\begin{array}{\|l\|l} \hline \ln .13 \\ {[24]} \end{array}$	V1 minimum negative reference	-10.00\%	$\begin{gathered} -100.00 \\ \text { to } 0.00 \% \end{gathered}$	Set the speed reference corresponding to the analog input 1 minimum negative range. Is corresponds to the minimum voltage level set in In.12. It is configured to introduce the speed reference through the analog input. The value is a percentage of the frequency adjusted in parameter In.1.	YES
$\begin{aligned} & \ln .14 \\ & {[24]} \end{aligned}$	V1 maximum negative voltage	-10.00V	$\begin{gathered} -10.00 \text { to } \\ 0.00 \mathrm{~V} \end{gathered}$	Define the maximum negative voltage for the analog input 1 according to the connected sensor characteristics.	YES
$\begin{aligned} & \ln .15 \\ & {[24]} \end{aligned}$	V1 maximum negative reference	10.00\%	$\begin{gathered} -100.00 \\ \text { to } 0.00 \% \end{gathered}$	Set the speed reference corresponding to the analog input 1 maximum negative range. It corresponds to the maximum voltage level set in In.13. It is configured to introduce the speed reference through an analog input. The value is a percentage of $\ln .1$.	YES

Screen	Description	Default value	Range	Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
In. 16	V1 Inverting	N	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~S} \end{aligned}$	Inverts the direction of rotation. Set this parameter to 1 (NO) if you need the motor to run in the opposite direction from the current rotation.	YES
In. 17	Adjust V1 quantification	0.04\%	$\begin{gathered} 0.04 \text { to } \\ 10.00 \% \end{gathered}$	Set the voltage analog input 1 quantification level. It is used when too much noise is present within the analog input signals. The quantification value is defined as the analog input 1 maximum percentage value. For example, if the input maximum value is 10 V and the quantification level is 1%, the frequency will change in 0.05 Hz (when the maximum frequency is 50 Hz), in 0.1 V intervals. As the input voltage increases or decreases, the output frequency will differ, removing the fluctuation effect within the analog input value.	YES
$\begin{aligned} & \ln .35 \\ & {[27]} \end{aligned}$	V2 Monitor	0.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 12.00 \mathrm{~V} \end{aligned}$	Voltage analog input 2 monitor.	YES
$\left\lvert\, \begin{aligned} & \ln .37 \\ & {[25]} \end{aligned}\right.$	V2 filter	10 ms	$\begin{gathered} 0 \text { to } \\ 10000 \mathrm{~m} \\ \mathrm{~s} \end{gathered}$	Set the time response against a change produced in the speed reference, so that it can reduce the speed fluctuation due to unstable signs or noise. Thus, the response becomes slower.	NO
$\begin{array}{\|l\|l\|} \hline \text { In. } 38 \\ {[25]} \\ \hline \end{array}$	V2 minimum voltage	0.00 V	$\begin{aligned} & 0.00 \text { to } \\ & 10.00 \mathrm{~V} \end{aligned}$	Define the minimum current for the analog input 2 according to the characteristics of the connected sensor.	YES
$\left\lvert\, \begin{aligned} & \ln .39 \\ & {[25]} \end{aligned}\right.$	V2 minimum reference	0.00\%	$\left.\begin{gathered} 0.00 \text { to } \\ 100.00 \% \end{gathered} \right\rvert\,$	Set the speed reference corresponding to the analog input 2 minimum range. It corresponds to the minimum voltage level set in In. 38 . It is configured to introduce the speed reference through the analog input. The value is a percentage of the frequency adjusted in parameter In. 1 .	YES

[27] Displayed when V is selected on the analog current/voltage input circuit selection switch (SW2).

Screen	Description	Default value	Range	Function	Set on RUN
In.40 [25]	V2 maximum current	10.00 V	0.00 to 10.00 V	Define the maximum current for the analog input 2, according to the connected sensor characteristics.	YES
In.41 [25]	V2 maximum reference	100.00%	Set the speed reference corresponding to the analog input 2 maximum range. It corresponds to the maximum current level set in In.40. It is configured to introduce the speed reference	YES	
(through the analog input. The value is a					
percentage of the frequency adjusted in					
parameter In.1.					

[28] Displayed when I is selected on the analog current/voltage input circuit selection switch (SW2).

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
In. 66	Digital input 2	START (-)		Note:	Comes from	the previous page.	NO
				OPT.	DESCR.	FUNCTION	
				7	SPEED-L	Bit 0 speed reference. Allows selecting the multiple preconfigured speed references. See St1-St3 and bA. $53-\mathrm{bA} .56$ (NO).	
				8	SPEED-M	Bit 1 speed reference. Allows selecting the multiple preconfigured speed references. See St1-St3 and bA. $53-\mathrm{bA} .56$ (NO).	
				9	SPEED-H	Bit 2 speed reference. Allows selecting the multiple preconfigured speed references. See St1-St3 and bA. $53-\mathrm{bA} .56$ (NO).	
In. 67	Digital input 3	RESET		11	XCEL-L	Bit 0 for alternative acceleration ramps. Allows the selection of the multiple preconfigured acceleration/deceleration ramps. See bA. 70 to bA. 83 .	
				12	XCEL-M	Bit 1 for alternative acceleration ramps. Allows the selection of the multiple preconfigured acceleration/deceleration ramps. See bA. 70 to bA. 83 .	NO
				13	RUN Enable	Sets the digital input to safe operation mode.	
				Note: Continues on the next page.			

Screen	Description	Default value	Range	Function			$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
In. 70	Digital input 6	MultVelM		Note: Comes from the previous page.			
				OPT.	DESCR.	FUNCTION	
				25	XCEL Stop	Sets the digital input to stop acceleration or deceleration. See Figure Inputs configuration for acceleration deceleration	
				26	2ndMotor	Set the digital input as 2nd motor operation, which is used when a single drive switch operates two motors.	
				34	Pre-Excit	Enable the motor preexcitation activation, before start. The user can adjust this functionality in parameters Ad.7, Ad. 1 and Ad. 13.	NO
				38	TimerlN	Set the function for the temporized digital output. If option 28 "Timer-Ou" is selected in OU. 31 or OU.33, the digital output will be enabled once the time set in OU. 56 has elapsed. Once this digital input is disabled, the digital output will be disabled once the time set in OU. 57 has elapsed.	
				Note:	Continues on	on the next page.	

Screen	Description	Default value	Range			Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
In. 71	Digital input 7	Mult VelA		Note: Comes from the previous page.			NO
						In IP66 equipment, pulse input TI and Multi-function terminal P5 share the same terminal. In this case, set parameter In. 69 to 54(TI).	
In. 85	Digital input activation delay	10ms	$\begin{aligned} & 0 \text { to } \\ & 10000 \mathrm{~m} \end{aligned}$ s	Set the input. smalle disabl	delay time In case any time gap d.	e when activating the digital y variation occurs within a ap, the input will remain	YES
In. 86	Digital input deactivation delay	3 ms	$\begin{gathered} 0 \text { to } \\ 10000 \mathrm{~m} \\ \mathrm{~s} \end{gathered}$	Set th input. smalle enabled	delay tim In case any time ga d.	me when disabling a digital y variations occur within a ap, the input will remain	YES
In 87	Digital input contact type	00000	$\begin{gathered} 0000000 \\ \text { to } \\ 1111111 \end{gathered}$	Adjust each to 0 or 1 according to the following table:			NO
					DESCR.		
				0	Contact	normally open (YES)	
				1	Contact	normally closed (NC)	
				The assignment order is P1, P2, ..., P7 starting from the bit placed farthest to the right. The number of Digital Inputs varies depending on the equipment (IP20 drives integrate 7 Digital Inputs and IP66 drives integrate 5).			
In. 89	Dl scan time	1 ms	$\begin{gathered} 1 \text { to } \\ 5000 \mathrm{~ms} \end{gathered}$	Set th digital	e time to inputs conf	wait before refreshing the figured as multireference.	NO

Screen	Description	Default value	Range		Function	Set RUN
In. 90	Digital inputs status	00000	$\begin{gathered} 0000000 \\ \text { to } \\ 1111111 \end{gathered}$	Shows the s The assign starting from The number on the equi Digital Input	tatus of digital inputs: ment order is $\mathrm{P} 1, \mathrm{P} 2, \ldots, \mathrm{P} 7$ the bit placed farthest to the right. of Digital Inputs varies depending uipment (IP20 drives integrate 7 s and IP66 drives integrate 5).	NO
In. 91	TI Monitor	0.00 kHz	0.00 to 50.00 kH z	This parameter shows the pulse frequency in this input.		NO
In. 92	TI Filter	10	$\begin{gathered} 0 \text { to } \\ 9999 \end{gathered}$	This parameter allows setting the time in which the pulse input reaches 63% of its nominal frequency. It is useful when the pulse frequency is supplied in multiple steps.		YES
In. 93	TI minimum input frequency	0.00 kHz	$\begin{array}{\|c\|} \hline 0.00 \text { to } \\ 32.00 \mathrm{kH} \\ \mathrm{z} \end{array}$	PARÁM. FUNCTION In. 93 This parameter allows setting the minimum input frequency through TI.		YES
In. 94	TI minimum input frequency percentage	0.00\%	$\begin{array}{\|c\|} \hline 0.00 \text { to } \\ 100.00 \% \end{array}$		through T . This parameter allows setting the minimum input frequency percentage through TI.	YES
In. 95	TI maximum input frequency	$\begin{gathered} 32.00 \mathrm{kH} \\ \mathrm{z} \end{gathered}$	$\begin{array}{\|c} 0.00 \text { to } \\ 32.00 \mathrm{kH} \\ \mathrm{z} \end{array}$	$\ln .95$	This parameter allows setting the maximum input frequency through T . This parameter allows setting	YES
In. 96	TI maximum input frequency percentage	100.00\%	$\begin{array}{\|c\|} \hline 0.00 \text { to } \\ 100.00 \% \end{array}$	In. 96 See Figure	the maximum input frequency percentage through TI. TI configuration.	YES
In. 97	TI Inverting	N	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~S} \end{aligned}$	This parameter allows inverting the TI signal. Set this parameter to 1 (NO) if you need a reverse signal.		YES

Screen	Description	Default value	Range	Function	$\begin{gathered} \text { Set } \\ \text { on } \\ \text { RUN } \end{gathered}$
In. 98	TI noise reduction level	0.04\%	$\begin{aligned} & 0.04 \text { to } \\ & 10.00 \% \end{aligned}$	This parameter is used to reduce noise in the TI input signal. The quantification value is defined as the input maximum percentage value.	YES
In. 99	Input mode setting	00	00 to 11	Software status. Set each bit to 0 or 1 according to the following table:	NO
				BIT DESCR.	
				00 V2, NPN	
				01 V2, PNP	
				10 I2, NPN	
				11 I2, PNP	

Multifunction relay configuration

TI configuration

Group 6: Outputs \rightarrow OU

Screen	Description	Default value	Range	Function	Set on RUN
OU. 3	Analog output 1 offset	0.0\%	$\begin{array}{\|c\|c\|} \hline-100.0 \text { to } \\ 100.0 \% \end{array}$	For example, when the analogue output is configured as 'Frequency', the equation that governs the operation is: $\begin{aligned} & \text { AO1 } \\ & =\frac{\text { Frequency }}{\text { MaxFreq }} \times \text { Gain A01 } \\ & + \text { Offset AO1 } \end{aligned}$ where Gain AO1 is set in parameter OU. 2 and Offset AO1 is set in parameter OU.3.	YES
OU. 4	Analog output 1 filter	5 ms	$\begin{gathered} 0 \text { to } \\ 10000 \mathrm{~ms} \end{gathered}$	Filter for the analog output 1 value. Occasionally, the analog signal is slightly unstable. It can be improved selecting another filter value. Note: The use of a filter can add a slight delay within the analog output.	YES
OU. 5	Analog output 1 constant setting	0.0\%	$\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$	Set a constant speed in the analog output 1 , whenever it has been configured as 'Constant' in parameter OU.1.	YES
OU. 6	Analog output 1 monitor	0.0\%	$\begin{array}{\|c\|} \hline 0.0 \text { to } \\ 1000.0 \% \end{array}$	Analog output 1 monitor.	YES
OU. 30	Relay fault output	010	$\begin{gathered} 000 \text { to } \\ 111 \end{gathered}$	This parameter allows setting when the relay output is set as 29 'FAULT': OPC FUNCTION 001Fault due to low voltage. 010Any faults other than low voltage. $^{\mid 100}$Automatic restart final failure. Final fault automatic restart. The relay will enable whenever all restart attempts (Pr.9) have been carried out or time set in Pr. 10 has elapsed.	YES
OU. 31	Relay 1 control source	Trip	0 to 40	Configures each relay and digital output according to the following table:	YES

Screen	Description	Default value	Range	Function	Set on RUN
				OPT. FUNCTION 0 Contact normally open (NO) 1 Contact normally closed (NC)	
OU. 53	Digital output connection delay on fault	0.00s	$\begin{gathered} 0.00 \text { to } \\ 100.00 \mathrm{~s} \end{gathered}$	If a fault trip occurs, trip relay or multifunction output operates after the time delay set in OU.53. Terminal is off with the input initialized after the time delay set in OU.54.	YES
OU. 54	Digital output disconnection delay on fault	0.00s	$\begin{gathered} 0.00 \text { to } \\ 100.00 \mathrm{~s} \end{gathered}$		YES
OU. 55	Digital output connection delay	0.00s	$\begin{aligned} & 0.00 \text { to } \\ & 100.00 \mathrm{~s} \end{aligned}$	Input a signal $(O n)$ to the timer terminal to operate a timer output (Timer out) after the time set at OU. 55 has passed. When the multi-function input terminal is off, multifunction output or relay turns off after the time set at OU. 56 . See also digital inputs option 38 'Timer In'.	YES
OU. 56	Digital output disconnection delay	0.00s	$\begin{gathered} 0.00 \text { to } \\ 100.00 \mathrm{~s} \end{gathered}$		YES
OU. 57	Relay FDT level	30.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Value of the output frequency for digital outputs FDT options.	YES
OU. 58	Relay FDT band	10.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \mathrm{dr} .20 \end{aligned}$	Detection frequency band for digital outputs FDT options.	YES

Screen	Description	Default value	Range	Function				Set on RUN
OU. 61	Pulse output mode	Frequen cy	0 to 15	Pulse output setting.				YES
				OPT.	FUNCTION	OPT.	FUNCTION	
				0	Frequency	8	TargetFq	
				1	O/pCurr	9	RampFreq	
				2	O/pVolt	10	SpeedFdb	
				3	DCLinkV	12	PIDRefVal	
				4	Torque	13	PIDFdbVal	
				5	O/pPower	14	PIDO/p	
				6	Idse	15	Constant	
					Iqse			
OU. 62	Pulse output gain	100.0\%	$\begin{gathered} -1000.0 \\ \text { to } \\ 1000.0 \% \end{gathered}$	Adjusts output value and offset. If frequency is selected as an output, it will operate according to the following equation:$\begin{aligned} & T 0=\frac{\text { Frequency }}{\text { MaxFreq }} \times \text { TO gain } \\ & \times \text { TO Bias } \end{aligned}$				YES
OU. 63	Pulse output offset	0.0\%	$\begin{gathered} -100.0 \text { to } \\ 100.0 \% \end{gathered}$					YES
OU. 64	Pulse output filter	5 ms	$\begin{array}{\|c\|} 0 \text { to } \\ 10000 \mathrm{~ms} \end{array}$	Sets filter time constant on analog output.				YES
OU. 65	Pulse output constant setting	0.0\%	$\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$	If analog output item is set to constant, the analog pulse output is dependent on the set parameter values.				YES
OU. 66	Pulse output monitor	0.0\%	$\begin{array}{c\|} 0.0 \text { to } \\ 1000.0 \% \end{array}$	Monitors analog output value. Displays the maximum output pulse (32 kHz) as a percentage (\%) of the standard.				YES

Group 7: Communication Bus \rightarrow CM

[29] Will not be displayed when P2P and MultiKD is set

Screen	Description	Default value	Range	Function		$\begin{aligned} & \text { Set on } \\ & \text { RUN } \end{aligned}$
CM. $4{ }^{\text {[27] }}$	Communication frame structure	D8/PN/S 1	D8/PN/S1 D8/PN/S2 D8/PE/S1 D8/PO/S1	Select the communication frame structure and defines the data length, parity confirmation method and the number of stop bits:		YES
				OPT DESCR.	FUNCTION	
				$\begin{array}{\|l\|l\|} \hline 0 & \text { D8 / } \\ \text { PN/S1 } \\ \hline \end{array}$	8-bit data / no parity check / 1 stop bit	
				$\begin{array}{\|l\|l\|} \hline 1 & \text { D8 I } \\ \text { PN/S2 } \end{array}$	8-bit data / no parity check / 2 stop bits	
				2 D8/ PE/S1 	8-bit data / even parity / 1 stop bit	
				$\begin{array}{\|l\|l\|} \hline 3 & \mathrm{D} 8 / \mathrm{PO} \\ \hline & \mathrm{~S} 1 \\ \hline \end{array}$	8-bit data / odd parity / 1 stop bit	
CM. $5^{[27]}$	Response delay	5 ms	0 to 100 ms	The MODBUS plays the role of slave will reply a in this parame master devic communications where the mast quick slave answ	-RTU communication of the slave device. The after the time period set ter. This allows the attending the within a system ter cannot manage a wer.	YES
CM. $6^{[30]}$	Communication option S/W version	0.00	-	Show the soft optional commu is any connected	ware version of the nications card, if there d.	YES
CM. $7^{[28]}$	Communication option ID	1	0 to 255	Identifier of the connected to the	communications card drive.	YES
CM. $8^{[28]}$	Card baud rate	12Mbps	-	Communications	s card baud rate.	YES
CM. $9^{[28]}$	Communication option LED status	-	-	This parameter the communicat	function depends on tions card.	YES
CM. 30	Output parameters number	3	0 to 8	Configure a group read several once. The user m parameters and CM.31-38.	oup of addresses to output parameters at must set the number of then configure them in	YES

Screen	Description	Default value	Range	Function	Set on RUN
$\begin{aligned} & \text { CM. } 31 \\ & {[31]} \end{aligned}$	Output communication addresses 1 to 8	40011	0 to 65535	Define the output parameter group for data transmission, so that addresses configured in CM.31-38 ca be used to send several parameters at once in the same communications frame. The size of the group is set in CM. 30	YES
$\begin{aligned} & \text { CM. } 32 \\ & {[29]} \end{aligned}$		40012			YES
$\begin{aligned} & \text { CM. } 33 \\ & {[29]} \end{aligned}$		40013			YES
$\begin{aligned} & \text { CM. } 34 \\ & {[29]} \end{aligned}$		40001			YES
$\begin{aligned} & \text { CM. } 35 \\ & {[29]} \end{aligned}$		40001			YES
$\begin{aligned} & \text { CM. } 36 \\ & {[29]} \end{aligned}$		40001			YES
$\begin{aligned} & \text { CM. } 37 \\ & {[29]} \end{aligned}$		40001			YES
$\begin{aligned} & \text { CM. } 38 \\ & {[29]} \end{aligned}$		40001			YES
CM. 50	Number of input parameters	2	0 to 8	Configure a group of addresses to read several input parameters at once. The user must set the number of parameters and then configure them in CM.51-58.	YES
$\begin{aligned} & \text { CM. } 51 \\ & {[32]} \end{aligned}$	Input communication addresses 1 to 8	40006	0 to 65535	Define the input parameter group for data transmission, so that addresses configured in CM. $51-58$ ca be used to send several parameters at once in the same communications frame. The size of the group is set in CM. 50	NO
$\begin{aligned} & \text { CM. } 52 \\ & {[30]} \end{aligned}$		40007			NO
$\begin{aligned} & \text { CM. } 53 \\ & {[30]} \end{aligned}$		40001			NO
$\begin{aligned} & \text { CM. } 54 \\ & {[30]} \end{aligned}$		40001			NO
$\begin{aligned} & \text { CM. } 55 \\ & {[30]} \end{aligned}$		40001			NO
$\begin{aligned} & \text { CM. } 56 \\ & {[30]} \end{aligned}$		40001			NO

[31] Only parameters corresponding to the value set in CM .30 will be shown (E.g., if $\mathrm{CM} .30=3$, parameters CM.31, CM. 32 and CM. 33 will be shown).
[32] Only parameters corresponding to the value set in CM. 50 will be shown (E.g., if CM. $50=2$, parameters CM. 51 and CM. 52 will be shown).

Screen	Description	Default value	Range	Function	Set on RUN
CM. 77		None		Note: See parameters $\operatorname{In} .65-71$, to consult detailed information about each option.	YES
CM. 86	Communication multifunction input monitoring	0	-	Monitor inputs configured in CM.7077.	NO
CM. 90	Data frame comm. monitor	$\begin{array}{\|c} \text { PE BUS } \\ 485 \end{array}$	PE BUS 485 Ext display	Monitor data frames status through the communication bus or the removable display.	YES
CM. 91	Received data frames counter	0	0 to 65535	Count the number of frames correctly received.	YES
CM. 92	Frames with error counter	0	0 to 65535	Count the number frames received with errors.	YES
CM. 93	NAK frames	0	0 to 65535	Count the number frames received with timeout.	YES
$\begin{aligned} & \text { CM. } 94 \\ & {[33]} \end{aligned}$	Communications update	N	$\begin{gathered} \text { NO } \\ \text { SI } \end{gathered}$	This parameter enables sending the current drive data configuration to the communications card.	NO
CM. 95	P2P communication selection	Disable All	0 to 3	P2P communication allows sharing input devices between different drives. To enable it, RS485 communication must be active. This parameter allows defining which devices will be master and which slave in the P2P communication.	NO
				OPT. FUNCTION 0 Disable All 1 P2P Master 2 P2P Slave 3 M-KPD Ready	

Screen	Description	Default value	Range		Function	Set on RUN
$\begin{aligned} & \text { CM. } 96 \\ & {[34]} \end{aligned}$	Digital output selection	NO	000 to 111	When multi-function outputs are used, a drive configured as P2P slave can choose whether to use its own output or the drive's output.		YES
				OPT.	FUNCTION	
				001	Analog output	
				010	Multi-function relay	
				100	Multi-function output	

Group 8: PID \rightarrow AP

Screen	Description	Default value	Range	Function	Set on RUN
AP. 1	Application function selection	Proc PID	Nada Proc PID	Application function selection. Set this parameter to '2' (Proc PID) to select functions for the process PID.	NO
AP. 2	Enable PLC mode	N	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	Display the parameter groups related to a user sequence.	NO
$\begin{aligned} & \text { AP. } 16 \\ & {[32]} \end{aligned}$	PID output	+0.00\%	$\begin{array}{\|c} -327.68 \\ \text { to } \\ 327.68 \% \end{array}$	Display the existing output value of the PID controller. The unit, gain, and scale set at AP.42-44 are applied.	YES
$\begin{aligned} & \text { AP. } 17 \\ & {[32]} \end{aligned}$	PID reference	+50.00\%	$\begin{array}{\|c} -327.68 \\ \text { to } \\ 327.68 \% \end{array}$	Display the existing reference value set for the PID controller. The unit, gain, and scale set at AP. $42-44$ are applied.	YES
$\begin{aligned} & \text { AP. } 18 \\ & {[32]} \end{aligned}$	PID feedback	+0.00\%	$\begin{array}{\|c} -327.68 \\ \text { to } \\ 327.68 \% \end{array}$	Display the input value of the PID controller that is included in the latest feedback. The unit, gain, and scale set at AP.42-44 are applied.	YES
$\begin{aligned} & \text { AP. } 19 \\ & {[32]} \end{aligned}$	PID local	+50.00\%	$\begin{gathered} -100.00 \\ \text { to } \\ 100.00 \% \end{gathered}$	When AP. 20 is set to 0 (MREF), the reference value can be entered. If the reference source is set to any other value, the setting values for AP. 19 are voided.	YES

Screen	Description	Default value	Range	Function			Set on RUN
AP. 20 [32]	Select PID regulator source	MREF	0 to 11	Select the source to introduce the PID regulator set point:			NO
				OPT.	DESCR.	FUNCTION	
				0	MREF	PID set point introduced from keypad.	
				1	V1	PID set point introduced by the voltage analog input 1.	
				3	V2	PID set point introduced by the voltage analog input 2.	
				4	12	PID set point introduced by the current analog input 2.	
				5	$\begin{aligned} & \text { MODB } \\ & \text { US } \end{aligned}$	PID set point introduced through the Modbus communication protocol.	
				7	$\begin{aligned} & \text { COMM } \\ & \mathrm{S} \end{aligned}$	PID set point introduced through any of the optional communication boards.	
				8	PLC	PID set point introduced through PLC.	
				11	PULSE	Reference signal through the pulse input.	
				Note: In case an unavailable option is selected, the parameter will return to its previous value.			

Screen	Description	Default value	Range		Function	Set on RUN
AP. 21 [32]	Select feedback signal source	V1	0 to 6	Select the source through which the feedback signal will be introduced to close the control loop.		NO
				OPT. DESCR.	FUNCTION	
				$0 \quad$ V1	Feedback signal by voltage analog input 1.	
				2 V2	Feedback signal by voltage analog input 2.	
				312	Feedback signal by current analog input 2.	
				$\begin{array}{\|l\|l} 4 & \text { MODB } \\ \hline \end{array}$	Feedback signal through Modbus communications integrated in the drive.	
				$\begin{array}{l\|l} 6 & \text { COMM } \\ \mathrm{S} \end{array}$	Feedback signal through any optional communication boards.	
				7 PLC	Feedback signal through the equipment's PLC.	
				10 PULSE	Feedback signal through the pulse input.	
				Note: In case selected, the p previous value.	an unavailable option is parameter will return to its	
$\underset{[32]}{\mathrm{AP} .22}$	PID controller proportional gain	+50.00\%	$\begin{gathered} 0.0 \text { to } \\ 1000.0 \% \end{gathered}$	Set the value controller. This whenever a gr needed. Note: Increasing cause a greater	of the proportional gain value should be increased reater control response is ing too much this value can system instability.	YES
$\begin{aligned} & \text { AP. } 23 \\ & {[32]} \end{aligned}$	PID controller integration time	10.0 ms	$\begin{gathered} 0 \text { to } \\ 200.0 \mathrm{~s} \end{gathered}$	Set the regulato greater precision value. Note: Increasing the system.	or integration time. In case on is needed, increase this g this value may slow down	YES

Screen	Description	Default value	Range	Function	Set on RUN
$\begin{aligned} & \text { AP. } 24 \\ & {[32]} \end{aligned}$	PID controller differential time	Oms	$\begin{array}{c\|} 0 \text { to } \\ 10000 \mathrm{~ms} \end{array}$	Set the regulator differential time. Whenever a greater response is needed, this value can be increased. Note: Increasing too much this value can cause a precision loss.	YES
$\begin{aligned} & \text { AP. } 25 \\ & {[32]} \end{aligned}$	PID output fine adjustment	+0.0\%	$\begin{array}{\|c\|} \hline 0.0 \text { to } \\ 1000.0 \% \end{array}$	Apply a fine adjustment at the PID output. Use this parameter when an adjustment for the proportional constant below 0.1% is required.	YES
$\underset{[32]}{\text { AP. } 26}$	Proportional gain scale	100.0\%	$\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$	This parameter, along with AP. 22 allow setting output ratio for errors between reference and feedback. If AP. 22 is set to 50%, then 50% of the error is output. For ratios below 0.1\% use AP.26.	NO
$\begin{aligned} & \text { AP. } 27 \\ & {[32]} \end{aligned}$	PID Filter	Oms	$\begin{array}{c\|} 0 \text { to } \\ 10000 \mathrm{~ms} \end{array}$	Used when the output of the PID controller changes too fast or the entire system is unstable, due to severe oscillation. In general, a lower value (default value $=0$) is used to speed up response time, but in some cases a higher value increases stability. The higher the value, the more stable the PID controller output is, but the slower the response time.	YES
				Set PID Mode.	
$\begin{aligned} & \text { AP. } 28 \\ & {[32]} \end{aligned}$	PID mode	Process	Process Normal	OPT. FUNCTION 0 Process 1 Normal	NO
$\begin{aligned} & \text { AP. } 29 \\ & {[32]} \end{aligned}$	Upper limit PID output	$\begin{gathered} +60.00 \mathrm{H} \\ z \end{gathered}$	AP. 30 to 300.00 H z	Set the PID output upper limit.	YES
$\begin{aligned} & \text { AP. } 30 \\ & {[32]} \end{aligned}$	Lower limit PID output	$-60.00 \mathrm{~Hz}$	$\begin{array}{\|c\|} 300.00 \mathrm{H} \\ z \text { to } \\ \text { AP. } 29 \end{array}$	Set the PID output lower limit.	YES

Screen	Description	Default value	Range	Function	Set on RUN
$\text { AP. } 31$[32]	Invert PID	N	$\begin{aligned} & \text { 0: NO } \\ & \text { 1: YES } \end{aligned}$	Define whether to invert the PID output or not	NO
				OPT. FUNCTION	
				The PID regulator answers in normal mode. Therefore, when the feedback value exceeds the NO reference signal, it will decrease its speed. However, if the feedback is lower than the reference signal value, the speed will be increased.	
				The PID regulator answers in inverse mode. Therefore, when the feedback exceeds the reference SI signal, speed will be increased. However, when the feedback value is lower than the reference signal, the speed will be decreased.	
$\begin{aligned} & \text { AP. } 32 \\ & {[32]} \end{aligned}$	PID output scale	$\begin{gathered} +100.00 \\ \% \end{gathered}$	$\begin{array}{\|c\|} \hline 0.1 \text { to } \\ 1000.0 \% \end{array}$	Set the PID regulator output magnitude.	NO
$\begin{aligned} & \text { AP. } 34 \\ & {[32]} \end{aligned}$	PrePID reference	0.00 Hz	$\begin{aligned} & 0.00 \text { to } \\ & \text { dr. } 20 \end{aligned}$	Set PID controller motion frequency. Pre-PID function allows configuring the drive to start at a fixed speed AP. 34 until PID feedback is above the set level (AP.35). If at a determined moment (AP.36) the drive does not reach the feedback level set in AP.35, fault F23 'Pipe Fill Flt' will be triggered	NO
AP. 35	PrePID end reference	0.0\%	$\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$	Set feedback level in PID mode.	NO
AP. 36	PrePID delay	600s	$\begin{gathered} 0 \text { to } \\ 9999 \mathrm{~s} \end{gathered}$	Set the PrePID time before triggering a fault F23 'Pipe Fill FIt'.	YES
AP. 37	Sleep mode activation delay	60.0s	$\begin{gathered} 0.0 \text { to } \\ 999.9 \mathrm{~s} \end{gathered}$	Set the delay time before enabling the sleep mode. If the drive operates at a speed value under the value of AP. 38 , it will stop running and enter in sleep mode.	YES

Screen	Description	Default value	Range	Function				Set on RUN
AP. 38	Sleep mode activation speed	0.00 Hz	$\begin{aligned} & 0.00 \mathrm{~Hz} \\ & \text { to dr. } 20 \end{aligned}$	Set the speed under which if a time period greater than the one defined in parameter AP.37, the drive will stop operating and enter in sleep mode.				YES
AP. 39	Awakening level	+35\%	$\begin{gathered} 0 \text { to } \\ 100 \% \end{gathered}$	Set the resuming PID control level after a suspension period (sleep mode).				YES
AP. 40	PID WakeUp mode	Below	Below Above Beyond	Set PI followi OPT. 0	D wake-up m ing table:	de, acc NCTION PID the er than 39.	cording to the operation starts frequency is the value set in	
					Above	PID the her than 39.	operation starts frequency is the value set in	YES
							peration starts e difference the reference the feedback greater than the G8. 39 (AP.39).	
AP. 42	PID unit	0\%	0 to 12	Set PID controller unit, according to the following table:				YES
				OPT.	DESCR.	OPT.	DESCR.	
				0	\%	7	V	
				1	Bar	8	I	
				2	mBar	9	kW	
				3	Pa	10	HP	
				4	kPa	11	${ }^{\circ} \mathrm{C}$	
				5	Hz	12	${ }^{\circ} \mathrm{F}$	
				6	rpm			
AP. 43	PID unit gain	100.00\%	$\begin{array}{\|c\|} \hline 0.00 \text { to } \\ 300.00 \% \end{array}$	Allows setting the PID unit gain.				YES

The following figure shows the PID operation sleep mode setting details:

Group 9: Protections $\rightarrow \mathrm{Pr}$

Screen	Description	Default value	Range	Function			Set on RUN
Pr. 4	Load duty type	Heavy	NRML HEAVY	Select the load type.			NO
				OPT.	DESCR. FU	FUNCTION	
				0	NRML $\|$S ty ap or	Selects the normal load type (variable torque) for applications such as fans or pumps.	
				1	$\text { HEAVY } \begin{aligned} & \text { S } \begin{array}{l} \text { St } \\ \text { ty } \\ \text { ap } \\ \text { el } \end{array}, \end{aligned}$	Selects the heavy load type (constant torque) for applications such as elevators and cranes.	
Pr. 5	Phase loss type	NONE	0 to 4	Select phase loss protection type.			NO
				OPT.	DESCR.	FUNCTION	
				0	NONE	Phase loss protection disabled.	
				1	OUTPUT	Output phase loss protection enabled.	
				2	INPUT	Input phase loss protection enabled. For its correct operation, the user should set the parameter Pr. 6.	
				3	ALL	Input and output phase loss protection enabled. For its correct operation, set the parameter Pr.6.	
				Caution: Users should ensure that disabling this protection does not compromise the operation of the installation and/or equipment.			
Pr. 6	Ripple voltage	15V	$\begin{gathered} 1 \text { to } \\ 100 \mathrm{~V} \end{gathered}$	Set the exceed fault w This require	e DC Bus rip ded to get when Pr. 5 is value is s ements.	ripple voltage that must be a phase loss phase input is set as "INPUT" or "ALL". set following customer's	NO

Screen	Description	Default value	Range	Function	Set on RUN
Pr. 7	Fault deceleration time	3.0s	$\begin{gathered} 0.0 \text { to } \\ 600.0 \mathrm{~s} \end{gathered}$	Deceleration time at fault trip.	YES
Pr. 8	Start after restart	N	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~S} \end{aligned}$	Parameters Pr. 9 and Pr. 10 only operate when Pr. 8 is set to $1(\mathrm{Yes})$.	YES
Pr. 9	Retry attempts number	0	0 to 10	The number of attempts to try the auto restart is set at Pr.9.	YES
$\begin{aligned} & \text { Pr. } 10 \\ & {[35]} \end{aligned}$	Retry delay	1.0s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \mathrm{~s} \end{aligned}$	If a fault trip occurs during operation, the drive automatically restarts after the set time programmed at Pr. 10. At each restart, the drive counts the number of tries and subtracts it from the number set at Pr. 9 until the retry number count reaches 0 . After an auto restart, if a fault trip does not occur within 60 secs, it will increase the restart count number. The maximum count number is limited by Pr. 10.	YES

[36] Displayed when Pr. 12 is not set to None.

Screen	Description	Default value	Range		Function	Set on RUN
Pr. 17	Overload warning select	YES	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	If the overload reaches the warning level, the terminal block multi-function output terminal and relay are used to output a warning signal. If 1 (Yes) is selected, it will operate. If $0(\mathrm{No})$ is selected, it will not operate.		YES
				OPT. DESCR.	FUNCTION	
				$\begin{array}{\|l\|l} & \\ 0 & \text { NO } \end{array}$	Overload warning disabled.	
				1 YES	Overload warning enabled.	
Pr. 18	Overload warning level	+150\%	$\begin{aligned} & 30 \text { to } \\ & 180 \% \end{aligned}$	The overload warning is a combination of the parameters Pr.18-20. The drive will enable some of the digital outputs configured as 'OverLoad' whenever the current flowing within the motor is greater than the value defined in parameter Pr. 18 during the time established in parameter Pr. 19.		YES
Pr. 19	Overload warning time	10.0s	$\begin{aligned} & 0.0 \text { to } \\ & 30.0 \mathrm{~s} \end{aligned}$			YES
Pr. 20	Overload trip select	Giro	0 to 2	The drive will ta case an overload	ake the following actions in dault occurs:	YES
				OPT. DESCR.	FUNCTION	
				0 None	Protection is disabled.	
				1 FreeRu n	The drive's output is cut, having as a consequence the motor free run.	
				$\begin{array}{\|l\|l} & \text { Dec } \end{array}$	A deceleration until stop is produced in the time defined in parameter Pr. 7.	
				Caution: disabling compromise the and/or equipme	Users should ensure that this protection does not operation of the installation nt.	
Pr. 21	Overload level	180\%	$\begin{aligned} & 30 \text { to } \\ & 200 \% \end{aligned}$	The overload combination of	warning protection is a the parameters Pr.20-22.	YES

Screen	Description	Default value	Range			Function	Set on RUN
Pr. 22	Overload trip time	60.0s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \mathrm{~s} \end{aligned}$	The drive will carry out the action selected in parameter Pr. 20 whenever the current flow within the motor is greater than the parameter Pr. 21 value during the time defined in parameter Pr. 22.			YES
Pr. 25	Enable underload	NO	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	Sets the underload warning options. Set to 1 (Yes) and set the multi-function output terminals (OU. 31 and OU.33) to 'Underload'. The warning signals are output when an underload condition arises.			YES
				OPT.	DESCR.	FUNCTION	
					NO	Underload warning disabled.	
						Underload warning enabled.	
Pr. 26	Underload warning delay	10.0s	$\begin{gathered} 0.0 \text { to } \\ 600.0 \mathrm{~s} \end{gathered}$	Set delay time when enabling the underload warning. The drive will wait this time before enabling the warning.			YES
Pr. 27	Underload fault mode	None	0 to 2	Set the underload fault trip protection.			YES
				OPT.	DESCR.	FUNCTION	
					None	Protection is disabled.	
					FreeRun	Output is blocked in an underload fault trip situation.	
					Dec	The motor decelerates and stops.	
Pr. 28	Underload fault delay	30.0	$\begin{gathered} 0.0 \text { to } \\ 600.0 \mathrm{~s} \end{gathered}$	Set the underlo	e delay oad fault.	time before triggering the	YES
Pr. 29	Underload minimum level	+30\%	$\begin{aligned} & 10 \text { to } \\ & 30 \% \end{aligned}$		Heavy Duty At Pr.30, based on	uty: Pr. 29 is not supported. underload level is decided the motor rated current.	YES

Screen	Description	Default value	Range	Function	Set on RUN
Pr. 30	Underload maximum level	+30\%	$\begin{aligned} & 30 \text { to } \\ & 100 \% \end{aligned}$	- Normal Duty: At Pr. 29 underload rate is decided based on twice the operation frequency of the motor rated slip speed (AP.12). At Pr.30, the underload rate is determined based on the frequency set at Cn.18. Upper and lower limits are based on the drive rated current	YES
Pr. 31	Action in case no motor is detected	Nada	None FreeRun	The drive will carry out one of the following actions whenever a fault is present due to the fact that no motor has been connected to the drives output terminal:	YES
Pr. 32	No motor fault level	+5\%	$\begin{gathered} 1 \text { to } \\ 100 \% \end{gathered}$	The fault protection if no motor is detected is a combination of parameters Pr.31-33.	YES
Pr. 33	No motor fault delay	3.0s	$\begin{aligned} & 0.1 \text { to } \\ & 10.0 \mathrm{~s} \end{aligned}$	The drive will carry out the action set in parameter Pr 31 whenever the current flowing within the motor does not exceed the value defined in parameter Pr. 32 during the time defined in parameter Pr. 33.	YES

Screen	Description	Default value	Range	Function			Set on RUN
Pr. 40	Action in case of thermoelectronic fault	None	0 to 2	The drive will carry out one of the following actions in case of a motor thermo-electronic fault:			YES
				OPT.	DESCR. F	FUNCTION	
				0	None ${ }^{\text {T }}$	The ETH function is not activated.	
				1	FreeRun	The drive output is blocked. The motor coasts to a halt (free-run).	
				2	Dec ${ }^{\text {a }}$ + ${ }^{\text {T }}$	The drive decelerates the motor until it stops.	
Pr. 41	Motor cooling mode at zero speed	SELF	$\begin{gathered} \text { SELF } \\ \text { FORCE } \\ \text { D } \end{gathered}$	Select the drive mode of the cooling fan attached to the motor.			YES
				OPT.	DESCR.	FUNCTION	
				0	SELF	As the cooling fan is connected to the motor axis, the cooling effect varies based on motor speed. Most universal induction motors have this design.	
				1	FORCED	Additional power is supplied to operate the cooling fan. This provides extended operation at low speeds. Motors designed for drives typically have this design.	
Pr. 42	Overcurrent level during 1 min	150\%	$\begin{aligned} & 120 \text { to } \\ & 200 \% \end{aligned}$	Set continu referen The m param passed be ena parame	the curre uously du nced to th motor nom eter bA. 13. d, the therm nabled, and eter Pr. 40	ent level which flows during one minute in \% he motor nominal current. minal current is set in . Whenever this limit is over mo-electronic protection will and the action defined in will be executed.	YES

Screen	Description	Default value	Range	Function			Set on RUN
Pr. 43	Continuous overcurrent level	+120\%	$\begin{aligned} & 50 \text { to } \\ & 150 \% \end{aligned}$	Set the overcurrent level under which the drive is able to work without enabling the thermo-electronic protection.			YES
Pr. 45	Free run trip mode	FreeRun	FreeRun Dec	Define trip mode in free run.			NO
				OPT.	DESCR. FU	NCTION	
					FreeRun	e drive cuts the output oltage and allows the tor free run.	
					Dec $\quad \begin{aligned} & \text { Th } \\ & \text { and }\end{aligned}$	e motor decelerates d then stops.	
Pr. 50	Stall prevention	00	00 to 11	Stall prevention can be configured for acceleration, deceleration, or while operating a motor at constant speed.			NO
				OPC	DESCR.	FUNCTION	
					Accelerating	Stall protection during acceleration.	
					At constant speed	Stall protection while operating at a constant speed.	
					At deceleration	Stall protection during deceleration.	
					FluxBraking	Flux braking during deceleration.	
Pr. 51	Speed for stall protection 1	60Hz	$\begin{array}{\|l\|} \text { dr. } 19 \text { to } \\ \text { Pr. } 53 \mathrm{~Hz} \end{array}$	Additional stall protection levels can be configured for different frequencies, based on the load type.			YES
Pr. 52	Level for stall protection 1	180\%	$\begin{aligned} & 30 \text { to } \\ & 250 \% \end{aligned}$				NO
Pr. 53	Speed for stall protection 2	60Hz	$\begin{array}{\|l\|l\|} \hline \text { In. } 55 \text { to } \\ \text { Pr. } 55 \mathrm{~Hz} \end{array}$				YES
Pr. 54	Level for stall protection 2	180\%	$\begin{aligned} & 30 \text { to } \\ & 250 \% \end{aligned}$	The stall level can be set above the base frequency. The lower and upper limits are set using numbers that correspond in ascending order. For example, the range for Pr. 54 becomes the lower limit for Pr. 52 and the upper limit for Pr. 56 .			NO
Pr. 55	Speed for stall protection 3	60Hz	$\begin{array}{\|l\|l\|l\|l\|l\|} \text { In. } 53 \text { to } \\ \text { Pr. } 57 \mathrm{~Hz} \end{array}$				YES
Pr. 56	Level for stall protection 3	180\%	$\begin{aligned} & 30 \text { to } \\ & 250 \% \end{aligned}$				NO

Screen	Description	Default value	Range		Function	Set on RUN
Pr. 57	Speed for stall protection 4	60 Hz	$\begin{array}{\|l\|l} \text { In. } 55 \text { to } \\ \text { dr. } 20 \mathrm{~Hz} \end{array}$			YES
Pr. 58	Level for stall protection 4	180\%	$\begin{aligned} & 30 \text { to } \\ & 250 \% \end{aligned}$			NO
Pr. 59	Flux braking gain	0\%	$\begin{gathered} 0 \text { to } \\ 150 \% \end{gathered}$	Set flux	braking gain.	YES
Pr. 60	CAP diagnosis level	0\%	$\begin{aligned} & 10 \text { to } \\ & 100 \% \end{aligned}$	Set cap	acitors diagnosis percentage.	YES
$\begin{aligned} & \text { Pr. } 61 \\ & {[37]} \end{aligned}$	Capacitor diagnosis mode	+0\%	0 to 3	This parameter allows performing a capacitor diagnosis To perform a capacitor diagnosis, the capacitance reference must be established by setting this parameter to 1 when the drive is used for the first time. The measured reference is saved in Pr. 63 and will be used as reference for the diagnosis.		NO
				OPT.	DESCR.	
					Nonde	
					RefDiag (*)	
					PreDiag	
				3	InitDiag	
				(*) Not capacit to use first time	: This option is used to set a ance reference. It is recommended when the drive is operated for the	
$\begin{aligned} & \text { Pr. } 62 \\ & {[35]} \end{aligned}$	CAP exchange warning level	0\% ${ }^{[36]}$	$\begin{aligned} & 50.0 \text { to } \\ & 95.0 \% \end{aligned}$	Sets the The wa this val	capacitor exchange warning level. ning "ECAP" will be displayed when ue is reached.	NO
$\begin{array}{\|l} \text { Pr. } 63 \\ {[35]} \end{array}$	Capacitance reference	$0.0 \%{ }^{[36]}$	$\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$	This p referen must be operate	arameter shows the capacitance e measured in Pr.61. This value equal to 100.0% when the drive is d for the first time.	YES
Pr. 66	Braking resistor configuration	+0\%	0 to 30\%	Set bra Duty cy sets the operate	king resistor configuration (\%ED: cle). Braking resistor configuration rate at which the braking resistor for one operation cycle.	YES

[37] These parameters are displayed when Pr. 60 is set to more than 0.

Screen	Description	Default value	Range			Function	Set on RUN
Pr. 73	Speed deviation fault	N	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~S} \end{aligned}$	Fault due to speed deviation.			YES
$\begin{array}{\|l\|} \hline \text { Pr. } 74 \\ {[38]} \end{array}$	Speed deviation band	50	1 to 20	Speed deviation band.			YES
$\begin{aligned} & \mathrm{Pr} .75 \\ & {[36]} \end{aligned}$	Speed deviation time	60	1 to 120	Speed deviation time.			YES
Pr. 79	Action in case of fan trip	Trip	Trip Warn	Select the action to carry out in case a fault within the cooling fan is detected:			YES
				OPT.	DESCR.	FUNCTION	
					Trip	The drive generates a Fantrip.	
					Warn	The drive will enable the relay configured as 'VentWarn'.	
Pr. 80	Optional card trip mode	Giro	0 to 2	Enable an optional card fault (if any is used). Set the operation mode for the drive when a communication error occurs between the option card and the drive, or when the optional card is detached during operation.			YES
				OPT.	DESCR.	FUNCTION	
					None	No operation.	
					FreeRun	The drive output is blocked and fault trip information is shown on the display.	
					Dec	Motor decelerates to the value set at Pr. 7 .	
Pr. 81	Low voltage trip delay	0.0s	$\begin{aligned} & 0.0 \text { to } \\ & 60.0 \% \end{aligned}$	It allo	s setting	a delay for low voltage fault.	NO
Pr. 82	Enable low voltage trip	NO	$\begin{aligned} & \text { NO } \\ & \text { YES } \end{aligned}$	When voltag	this param situation	meter is set to NO and a low occurs, the drive trips.	NO
Pr. 86	Fan use percentage	0\%	$\begin{gathered} 0.0 \text { to } \\ 100.0 \% \end{gathered}$	This accum	paramete ulated pe	allows showing the rcent of fan usage.	YES

Screen	Description	Default value	Range	Function		Set on RUN
Pr. 87	Fan exchange warning level	90.0%	0.0 to 100.0%	Set fan exchange warning level. When the value is reached, the EFAN warning appears.	YES	
Pr. 88	Fan time reset	N	N Y	Sets the fan reset time.		

Group 10: Second Motor \rightarrow M2

This group appears if any of $\ln .65-71$ is set to 26 (second motor). In the following table, data shaded in grey will be displayed when a related code has been selected.

| Screen | Description | Default
 value | Range | Function |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| M2.4 | Motor 2
 acceleration
 ramp | 20.0s | 0.0 to
 600.0 s | |
| RUN | | | | |

Screen	Description	Default value	Range	Function	Set on RUN
M2.13	No load current	(*)	$\begin{gathered} 0.5 \text { to } \\ 1000.0 \mathrm{~A} \end{gathered}$	Set the measured current at rated frequency without load. If any difficulties are found when measuring the current without load, this setting should be between 30% and 50% of the motor nameplate rated current.	NO
M2.14	Motor 2 voltage	(*)	$\begin{aligned} & 170 \text { to } \\ & 480 \mathrm{~V} \end{aligned}$	Set the motor rated voltage according to its nameplate.	NO
M2.15	Motor 2 efficiency	(*)	$\begin{aligned} & 70 \text { to } \\ & 100 \% \end{aligned}$	Set the motor efficiency according to its nameplate.	NO
M2.16	Motor 2 inertia rate	(*)	0 to 8	Set the load inertia rate.	NO
M2.17	Stator resistor	(*)	(*)	Stator resistor fine setting.	NO
M2.18	Leak inductor	(*)	(*)	Leak inductor fine setting.	NO
M2.19	Stator inductor	(*)	(*)	Inductor stator fine setting.	NO
$\begin{aligned} & \text { M2.20 } \\ & {[39]} \end{aligned}$	Rotor time constant	228ms	$\begin{gathered} 25 \text { to } \\ 5000 \mathrm{~ms} \end{gathered}$	Rotor time constant fine setting.	NO

Screen	Description	Default value	Range	Function			Set on RUN
M2.25	V/F pattern	Lineal	0 to 3	Set V/F pattern according to the following table.			NO
				OPT.	DESCR.	FUNCTION	
				0	Linear	Output voltage increases and decreases at constant rate proportional to voltage/frequency (VIF) relation	
				1	Square	Output voltage increases quadratically according to the frequency. $K=1.5$.	
				2	V/F User	Define a customized V/F pattern.	
				3	Square2	Output voltage increases quadratically according to the frequency. $\mathrm{K}=2$.	
M2.26	Torque in forward direction	+2.0\%	$\begin{aligned} & 0.0 \text { to } \\ & 15.0 \% \end{aligned}$	Set the intensified torque in forward direction.			NO
M2.27	Torque in reverse direction	+2.0\%	$\begin{aligned} & 0.0 \text { to } \\ & 15.0 \% \end{aligned}$	Set the intensified torque in reverse direction.			NO
M2.28	Stall prevention level motor 2	150\%	$\begin{aligned} & 30 \text { to } \\ & 150 \% \end{aligned}$	Set the stall prevention level.			NO
M2.29	Motor 2 overcurrent level during 1 minute	+150\%	$\begin{aligned} & 100 \text { to } \\ & 200 \% \end{aligned}$	Set the current level which flows continuously during one minute in \% referenced to the motor nominal current. The motor nominal current is set in parameter M2.12. Whenever this limit is over passed, the thermoelectronic protection will be enabled, and the action defined in parameter Pr. 40 will be executed.			NO
M2.30	Motor 2 continuous overcurrent level	+100\%	$\begin{aligned} & 50 \text { to } \\ & 150 \% \end{aligned}$	Set the overcurrent level under which the drive is able to work without enabling the thermo-electronic protection.			NO

(*) These values depend on the motor setting.

Group 11: PLC Sequence \rightarrow US

This group appears when AP. 2 is set to 1 (NO) or CM. 95 is set to 2 (P2P Master).

A PLC sequence creates a simple sequence from a combination of different function blocks. The sequence can comprise of a maximum of 18 steps using 29 function blocks and 30 parameters.

One loop refers to a single execution of a user configured sequence that contains a maximum of 18 steps. Users can select a Loop Time of between $10-1000 \mathrm{~ms}$.

The parameters for configuring PLC sequences configuration can be found in groups 11 and 12 of the removable display; which are equivalent to groups US (for user sequence settings) and UF (for function block settings).

Screen	Description	Default value	Range	Function			Set on RUN
US. 1	PLC operation mode	Stop	0 a 2	This parameter allows setting the run and stop sequences.			NO
				OPT.	DESCR.	FUNCTION	
				0	Stop	Stop PLC sequence.	
				1	Run	The sequence will run continuously with the loop time set in US.2.	
				2	Run DI	The sequence will run continuously with the loop time set in US. 2 while the digital input set as 50 " PLC " is active.	
US. 2	PLC loop time	0.02s	0.01 s 0.02 s 0.05 s 0.1s 0.5 s 1s	Set the P	PLC seque	ence loop time.	NO

Screen	Description	Default value	Range	Function	Set on RUN
US. 11	Output link address for PLC function 1	0	$\begin{gathered} 0 \mathrm{a} \\ 65535 \end{gathered}$	Use registers US.11-28 to set the parameters to connect the 18 function blocks. If the input value is 0 , an output value cannot be used. To use the output value in step 1 for the frequency reference (Cmd Frequency), enter the communication address (0×1101) of the Cmd frequency as the Link UserOut1 parameter.	NO
US. 12	Output link address for PLC function 2	0			NO
...					
US. 27	Output link addr. PLC function 17	0	$\begin{gathered} 0 \mathrm{a} \\ 65535 \end{gathered}$	See US.11.	NO
US. 28	Output link addr. PLC function 18	0			NO
US. 31	PLC input value 1	0	$\begin{gathered} -9999 \text { a } \\ 9999 \end{gathered}$	Use registers US.31-60 to set 30 void parameters. Use when constant (Const) parameter input is needed in the user function block.	NO
US. 32	PLC input value 2	0			NO
...					
US. 60	PLC input value 30	0	$\begin{gathered} -9999 \mathrm{a} \\ 9999 \end{gathered}$	See US.31.	NO
US. 80	Analogue input V1 value	0.000	$\begin{array}{\|c\|} 0 \mathrm{a} \\ 12.000 \% \end{array}$	Allows setting the analog input V1 voltage value.	NO
US. 81	Analogue input 12 value	+0.000	$\begin{array}{\|c} -12.000 \\ a \\ 12.000 \% \end{array}$	Allows setting the analog input 12 voltage or current values.	NO
US. 82	Digital inputs value	0	0a 127	Allows setting the digital inputs voltage value.	NO
US. 85	Analogue output value	0	$\begin{array}{\|c\|} \hline 0.000 \mathrm{a} \\ 10.000 \% \end{array}$	Allows setting the analog output AO voltage or current values.	NO
US. 88	Digital output value	0	0 a 3	Allows setting the digital output Q1 voltage value.	NO

Group 12: PLC Function \rightarrow UF

This group appears when AP. 2 is set to 1 (Yes) or CM. 95 is set to 2 (P2P Master).
Set user defined functions for the 18 function blocks. If the function block setting is invalid, the output of the User Output is -1. All outputs are read only, and can be used with the user output link of the US group.

Screen	Description	Default value	Range	Function		Set on RUN
UF. 1	PLC function 1	NOP	0 to 28	Choose the func function block, ac table:	ction to perform in the ccording to the following	NO
				OPT. DESCR.	FUNCTION	
				0 NOP	No operation	
				1 ADD	Addition, $(\mathrm{A}+\mathrm{B})+\mathrm{C}$	
				2 SUB	Subtraction, ($\mathrm{A}-\mathrm{B}$) - C	
				3 ADD SUB	Addition and subtraction compound, $(\mathrm{A}+\mathrm{B})-\mathrm{C}$	
				4 MIN	Smallest value of the input values, $\operatorname{MIN}(A, B$, C).	
				5 MAX	Largest value of the input values, $\operatorname{MAX}(A, B$, C).	
				6 ABS	Absolute value of the A parameter, $\|\mathrm{A}\|$	
				7 NEGATE	Negative value of the A parameter, -(A).	
				8 MPYDIV	Compound multiplication and division, $(\mathrm{A} \times \mathrm{B}) / \mathrm{C} .$	
				9 REMAINDE	Remainder operation of A and B, A \% B	
				$\begin{array}{\|l\|l\|} \hline 10 & \text { COMPARE } \\ & -\mathrm{GT} \\ & \end{array}$	Comparison operation: if $(\mathrm{A}>\mathrm{B})$ the output is C ; if ($\mathrm{A}<1=\mathrm{B}$) the output is 0 . If C is not configured (default value 0×0000), the output when the condition is satisfied is 1 .	
				Note: Continues on	on the next page	

Screen	Description	Default value	Range	Function	Set on RUN
UF. 5	Output PLC function 1	+0	$\begin{array}{\|c} -32767 \\ \text { to } 32767 \end{array}$	Output value (Read Only) after performing the function block.	NO
UF. 6	PLC function 2	NOP	See UF. 1	See UF.1.	NO
UF. 7	Input A for PLC function 2	0	See UF. 2	See UF.2.	NO
UF. 8	Input B for PLC function 2	0	See UF. 3	See UF.3.	NO
UF. 9	Input C for PLC function 2	0	See UF. 4	See UF.4.	NO
UF. 10	Output PLC function 2	+0	See UF. 5	See UF.5.	NO
...					
UF. 86	PLC function 18	NOP	See UF. 1	See UF.1.	NO
UF. 87	Input A for PLC function 18	0	See UF. 2	See UF.2.	NO
UF. 88	Input B for PLC function 18	0	See UF. 3	See UF.3.	NO
UF. 89	Input C for PLC function 18	0	See UF. 4	See UF.4.	NO
UF. 90	Output PLC function 18	+0	See UF. 5	See UF.5.	NO

MODBUS COMMUNICATION

To control the variable speed drive with a PLC or a computer. the industrial standard communications protocol of Modicon, Modbus, is used. Connect the communication cables (*) and set the communication parameters on the drive according to the guidelines within this section.

Introduction

Various drives, or other slave devices, can be connected in a RS485 network to be controlled by a PLC or computer. This way, parameter setting and monitoring can be done from a computer, via a user program.

To communicate, any kind of RS485 converter can be used. Specifications depend on the manufacturer.

RS485 network system configuration
The purpose of the Serial Communication Network of the SD300 is to integrate the drive into a network compatible with the Modbus

[^0]communications protocol. This is possible using the RS485 physical communications port or USB port.

Modbus communication system allows SD300 drives to be controlled and/or monitored as a slave by a Modbus master from a remote location.

RS485 network allows connecting up to 16 equipment in the same network. SD300 drives operate as a peripheral slave when connected to Modbus system. This means that the drive does not start the communication task, the master does.

Practically all of the operating modes, parameters and drive characteristics are accessible through serial communications. For example, master can give start and stop order to the drive, control SD300 status, read the current used by the motor etc., in short, the master can access all of the features of the drive.

Communication Standards

ITEM

Communication method/
Transmission type Number of connected inverters/ Transmission distance

Recommended cable size Installation type

Power supply
Communication speed
Control procedure
Communication system
Character system
Stop bit length

STANDARD

RS-485/Bus type, Multi-drop Link System
Maximum of 16 inverters / Maximum1,200m (recommended distance: within 700m)
$0.75 \mathrm{~mm}^{2}$, (18AWG), Shielded Type Twisted-Pair (STP) Wire
Dedicated terminals ($\mathrm{S}+/ \mathrm{S}-/ \mathrm{SG}$) on the control terminal block Supplied by the inverter - insulated power source from the inverter internal circuit

1200/2400/9600/19200/38400/57600/115200 bps
Asynchronous communications system
Half duplex system
Modbus-RTU: Binary / PE Bus: ASCII
1-bit/2-bit

ITEM	STANDARD
Frame error check	2 bytes
Parity check	None/Even/Odd
Terminals	$\begin{aligned} & S-\rightarrow \text { RS485 A (negative) } \\ & S+\rightarrow R S 485 \mathrm{~B} \text { (positive) } \\ & S G \rightarrow \text { RS Common (OVDC) } \end{aligned}$
Output signal level	'1' logical $=+5 \mathrm{~V}$ differential '0' logical $=-5 \mathrm{~V}$ differential
Input signal level	'1' logical $=+5 \mathrm{~V}$ differential '0' logical $=-5 \mathrm{~V}$ differential
Programmable inputs via Modbus	7 digital inputs in IP20 drives and 5 digital inputs in IP66 drives 2 programmable analogue inputs ($0 \sim 10 \mathrm{~V} / 4 \sim 20 \mathrm{~mA}$)
Programmable outputs via Modbus	1 relay output; 1 pulse output (TO) in IP20 drives. 1 programmable analogue outputs ($0 \sim 10 \mathrm{~V} / 0 \sim 32 \mathrm{~mA}$) 1 digital output

RS485 Connections

The following diagram shows a common wiring for a RS485 connection:

*The connection of the shield could be done on the gateway terminals or on the opposite extreme of the cable, depending on the installation conditions.

SD30DTR0001AI

RS485 connection

Supported Modbus Function Codes

Serial communications protocol provided by SD300 drive adhere to Modbus. The drive uses four reading and writing functions from all of the functions that exist in Modbus protocol. These are:

Function	Description
3	Registers Reading
4	Read Input Register
6	Write Single Register
16	Registers Writing

The implementation of these function codes allows reading up to 120 registers from a Parameter Group using a single frame. If you want to access to a consecutive memory registers, but belonging to different groups, you should access in as many frames as groups are involved.

Modbus Function Code ${ }^{\circ}{ }^{3}$: Registers Reading

This function code allows the Modbus controller (master) to read the content of the data registers indicated in the drive (slave). This function code only admits unicast addressing. Broadcast or groupcast addressing are not possible with this function code.

The implementation of this function code in the drive allows reading up to 120 registers with consecutive addresses of the drive in a single frame.

Next, a frame is shown where the master tries to read the content of 3 registers of a drive where the current used by each phase is. The information that should be attached in the ask frame is the following:

- Data address of the drive.
- Modbus function code (3 Registers reading).
- Starting Data address.
- Registers number for reading.
- CRC-16 code.

The answer of the drive (slave) should contain the following fields:

- Data address of the slave.
- Modbus function code (3 Registers reading).
- Bytes number for reading.
- Bytes number / 2 registers.
- CRC-16 code.

Each register consists of 2 bytes (2×8 bits $=16$ bits). This is the default length for all registers.

Example:

Suppose that we want to read the motor current (nameplate data) via communications. This data corresponds to the parameter G2.13 'MTR CUR $=0.0 \mathrm{~A}$ '. The frame that should be transmitted is:

Modbus Address	Modbus Function Code	Starting Data Address (44622)	Registers Number	CRC-16
$0 \times 0 \mathrm{~A}$	0×03	$0 \times 0120 \mathrm{D}$	0×0001	0×2493

Suppose that instantaneous current of the equipment is 8.2 A . (Modbus value 82 decimal $=0 \times 52$ Hexadecimal). The answer of the slave will be:

Modbus Address	Modbus Function Code	Bytes Number	Data (address 20) $(=110)$	CRC-16
$0 \times 0 \mathrm{~A}$	0×03	0×02	0×0052	$0 \times 9 \mathrm{C} 78$

Modbus Function Code № 16: Registers Writing

This function code allows the Modbus controller (master) to write the content of the data registers indicated in the drive (slave). whenever those registers are not of Read only. Registers writing by the master does not impede the later modification of those registers by the slave.

The implementation of this function code in the drive allows writing up to 5 registers of the drive in a single frame.

Next is shown a frame where the master tries to write the content of 1 register that stores the acceleration time. The information that should be sent in the request frame is the following:

- Data address of the slave.
- Modbus function code (16 Registers writing).
- Starting Data Address.
- Registers number for writing.
- Bytes number for writing.
- Content of registers for writing.
- CRC-16 code.

The answer of the slaves includes:

- Data address of the slave.
- Modbus function code (16 Registers writing).
- Starting Data Address.
- Written registers number.
- CRC-16 code.

Addressing Modes

Broadcast Addressing Mode

Broadcast addressing mode allows the master to access at the same time to all of the slaves connected to the Modbus network. The Modbus function code that admits this global addressing mode is:

Function	Description
16	Registers Writing

In order to access to all of the equipment connected in a Modbus network. you must use the address 0 .

When this address is used. all of the slaves in the Modbus network make the required task but they do not prepare any answer.

Summary of Modbus Addresses

Common Area

Modbus Address		Parameter	Scale	Units	R/W	Data Values
Decimal	Hexadecimal					
40000	Oh0000	Inverter Model	-	-	R	B: SD300
40001	Oh0001	Drive Power Rating	-	-	R	0: 0.75 kW 1: 1.5 kW 2: 2.2 kW 3: 3.7 kW 4: 5.5 kW 5: 7.5 kW 6: 11 kW 7: 15 kW 8: 18.5 kW 9: 22 kW
40002	Oh0002	Drive Input Voltage	-	-	R	$\begin{aligned} & 0: 220 \mathrm{VAC} \\ & 1: 400 \mathrm{VAC} \end{aligned}$
40003	Oh0003	SW Version	-	-	R	(Ex) 0x0100: Version 1.0 (Ex) 0x0101: Version 1.1
40005	Oh0005	Reference Frequency	0.01	Hz	R/W	Starting Frequency to Max Frequency

Modbus Address		Parameter	Scale	Units	R/W	Data Values
Decimal	Hexadecimal					
						26: Reserved 27: RS485 28: Communication Option 29: PLC Option 30: Fix Frequency 31: PID
						Bit 15: Not used
40007	Oh0007	Acceleration Time	0.1	Sec	R/W	
40008	Oh0008	Deceleration Time	0.1	Sec	R/W	
40009	Oh0009	Output Current	0.1	A	R	
40010	Oh000A	Output Frequency	0.01	Hz	R	
40011	Oh000B	Output Voltage	1	V	R	
40012	OhOOOC	DC Bus Voltage	1	V	R	
40013	Oh000D	Output Power	0.1	kW	R	
40014	Oh000E	Drive Status		-	R	Bit 0: Stop
						Bit 1: Start (+)
						Bit 2: Start (-)
						Bit 3: Fault
						Bit 4: Accelerating
						Bit 5: Decelerating
						Bit 6: Steady Status
						Bit 7: DC Brake
						Bit 8: Stop
						Bit 9: Fix Frequency
						Bit 10: Open Brake
						Bit 11: Start (+) Command
						Bit 12: Start (-) Command
						Bit 13: Start / Stop by Communication
						Bit 14: Freq. Reference by Communication
						Bit 15: 0-Remote; 1-Local
40015	Oh000F	Fault information	-	-	R	Bit 0: Latch type fault
						Bit 3: Level type fault
						Bit 10: Hardware diagnosis
40016	Oh0010	Digital Inputs Status	-	-	R	Bit 0: P1
						Bit 1: P2
						Bit 2: P3

Modbus Address		Parameter	Scale	Units	R/W	Data Values
Decimal	Hexadecimal					
						Bit 3: P4
						Bit 4: P5
						Bit 5: P6
						Bit 6: P7
						Bit 7: P8
40017	Oh0011	Digital Outputs Status	-	-	R	Bit 0: Relay 1
						Bit 1: Multifunction output
40018	Oh0012	V1	0.1	\%	R	Voltage input V1
40019	Oh0013	V2	0.1	\%	R	Voltage Input V2 (Option I/O)
40020	Oh0014	12	0.1	\%	R	Current Input 12
40021	Oh0015	RPM	1	rpm	R	Speed Output
40026	Oh001A	Display unit	-	-	R	$\begin{aligned} & \text { 0: Hz } \\ & \text { 1: rpm } \end{aligned}$
40027	Oh001B	Number of poles	-	-	R	Motor poles visualization

Notes:

1. Start / Stop order through communications (address 40006/0h0006)

Every bit is enabled when they change their status from 0 to 1. For example, the drive stops due to a fault during start. Until the fault has been reset and the start order is given, the drive will not operate.
2. Addresses $40005 / 0 h 0005$ and $40006 / 0 h 0006$

The values stored in these addresses will be deleted if the drive losses it power supply. These addresses will only keep their values while the equipment remains powered.

Monitoring Parameters

NOTE: These are read-only parameters.

Modbus Address		Parameter	Scale	Units	Values
Decimal	Hexadecimal				
40768	0 h 0300	Drive model	-	-	SD300: 006h
40769	0 h 0301	Rated power	-	-	$0.75 \mathrm{~kW}: 3200 \mathrm{~h}$ $1.5 \mathrm{~kW}: 4015 \mathrm{~h}$

Modbus Address		Parameter	Scale	Units	Values
Decimal	Hexadecimal				
					$2.2 \mathrm{~kW}: 4022 \mathrm{~h}$ 3.7 kW : 4037h $5.5 \mathrm{~kW}: 4055 \mathrm{~h}$ 7.5 kW : 4075h 11 kW: 40BOh 15 kW : 40FOh 18.5 kW : 4125 h 22 kW : 4160h
40770	Oh0302	Input voltage	-	-	220VAC: 0221h 400VAC: 0431h
40771	Oh0303	SW Version	-	-	(Ex) 0x0100: Version 1.0 (Ex) 0x0101: Version 1.1
40773					Bit $0-3$: 0: Stopped 1: Operating in forward direction 2: Operating in reverse direction 3: DC operating (0 speed control)
	Oh0305	Drive operation state	-	-	Bit 4-7 1: Speed searching 2: Accelerating 3: Operating at constant rate 4: Decelerating 5: Decelerating to stop 6: H/W OCS 7: S/W OCS 8: Dwell operation
					Bit 12 - 15 0 : Normal state 4: A warning has occurred 8: A fault has occurred. Drive will operate according to the setting of Pr. 30 .
40774	Oh0306	Drive operation frequency command source	-	-	Bit $0-7$: Frequency command source 0: Keypad speed 1: Keypad torque 2-4: Up/Down operation speed $5: \mathrm{V} 1,7$: V2, 8: 12,9 : Pulse 10: Built-in RS 485

Modbus Address		Parameter	Scale	Units	Values
Decimal	Hexadecimal				
					```11: Optional communication card 12: PLC 13: Jog 14: PID 25-39:Multi-step speed frequency```
					Bit 8-15: Operation command source   0: Keypad   1: Optional communication card   2: PLC   3: Built-in RS 485   4: Terminal block
40775	Oh0307	SW Version	-	-	(Ex) 0x0100: Version 1.0
40776	Oh0308	SW Version	-	-	(Ex) 0x0101: Version 1.1
40784	Oh0310	Output current	0.1	A	-
40785	Oh0311	Output frequency	0.01	Hz	-
40786	Oh0312	Output rpm	0	rpm	-
40787	Oh0313	Motor speed feedback	0	rpm	$\begin{aligned} & -32768 \mathrm{rpm}-32767 \mathrm{rpm} \\ & \text { (directional) } \end{aligned}$
40788	Oh0314	Output voltage	1	V	-
40789	Oh0315	DC bus voltage	1	V	-
40790	Oh0316	Output power	0.1	kW	-
40791	Oh0317	Output torque	0.1	\%	-
40792	Oh0318	PID reference	0.1	\%	-
40793	Oh0319	PID feedback	0.1	\%	-
40794	Oh031A	Motor 1 poles number	-	-	Visualization of motor 1 poles
40795	Oh031B	Motor 2 poles number	-	-	Visualization of motor 2 poles
40796	Oh031C	Poles number of the selected motor	-	-	Visualization of selected motor poles
40797	Oh031D	Select Hz/rpm	-	-	0: Hz, 1: rpm
40800	Oh0320	Digital inputs information			Bit 0: P1
					Bit 1: P2
					Bit 2: P3
					Bit 3: P4
					Bit 4: P5
					Bit 5: P6
					Bit 6: P7
40801	Oh0321		-	-	Bit 0: Relay 1


Modbus Address		Parameter	Scale	Units	Values
Decimal	Hexadecimal				
		Digital outputs information			Bit 1: Multi-function output
40802	Oh0322	Communication addresses information		-	Bit 0: Input 1 (CM.70)
					Bit 1: Input 2 (CM.71)
					Bit 2: Input 3 (CM.72)
					Bit 3: Input 4 (CM.73)
					Bit 4: Input 5 (CM.74)
					Bit 5: Input 6 (CM.75)
					Bit 6: Input 7 (CM.76)
					Bit 7: Input 8 (CM.77)
40803	Oh0323	Selected motor	-	-	0: Motor 1   1: Motor 2
40804	Oh0324	V1	0.1	\%	Analog voltage input V1
40805	Oh0325	V2	0.1	\%	Analog voltage input V2
40806	Oh0326	12	0.1	\%	Analog current input I2
40807	Oh0327	A01	0.1	\%	Analog output 1
40808	Oh0328	AO2	0.1	\%	Analog output 2
40813	Oh032D	Drive temperature	1	${ }^{\circ} \mathrm{C}$	-
40814	Oh032E	Drive power	1	kWh	-
40815	Oh032F	consumption	1	kWh	
40816	Oh0330	Latch type trip 1 information	-		Bit 0: Overload
					Bit 1: Underload
					Bit 2: Inverter Overload
					Bit 3: E-Thermal
					Bit 4: Ground Fault
					Bit 5: Output open-phase
					Bit 6: Input open-phase
					Bit 9: NTC
					Bit 10: Overcurrent
					Bit 11: Overvoltage
					Bit 12: External trip
					Bit 13: Arm short
					Bit 14: Over Heat
					Bit 15: Open fuse
40817	Oh0331	Latch type trip 2 information	-		Bit 0: MC Fail trip
					Bit 2: PTC trip
					Bit 3: Fan trip
					Bit 5: Error while writing parameter
					Bit 6: Pre PID trip


Modbus Address		Parameter	Scale	Units	Values
Decimal	Hexadecimal				
					Bit 7: External card contact fault
					Bit 8: External brake trip
					Bit 9: No motor trip
					Bit 10: External card fault
40818	Oh0332	Level type trip information	-	-	Bit 0: Free run fault
					Bit 1: Low voltage
					Bit 2: Lost command
					Bit 3: Display lost command
					Bit 4: Safety A
					Bit 5: Safety B
40819	Oh0333	HW diagnosis trip information	-	-	Bit 0: ADC error
					Bit 1: EEPROM error
					Bit 2: Watchdog1
					Bit 3: Watchdog 2
					Bit 5: Full queue


Modbus Address		Parameter	Scale	Units	Values
Decimal	Hexadecimal				
40820	Oh0334	Warning information	-	-	Bit 0: Overload
					Bit 1: Underload
					Bit 2: Drive overload
					Bit 3: Lost command
					Bit 4: Fan running
					Bit 5: DB
					Bit 6: Wrong encoder installation
					Bit 7: Encoder disconnection
					Bit 8: Keypad lost
					Bit 9: Auto tuning failed
40832	Oh0340	Days ON	0	Days	Total number of days the drive has been powered on.
40833	Oh0341	Minutes ON	0	Minutes	Total number of minutes the drive has been powered on, excluding the total number of days.
40834	Oh0342	Days on run	0	Days	Total number of days the drive has been driving the motor.
40835	Oh0343	Minutes on run	0	Minutes	Total number of minutes the drive has been driving the motor, excluding the total number of days.
40836	Oh0344	Fan runtime days	0	Days	Total number of days the heat sink fan has been running.
40837	Oh0345	Fan runtime minutes	0	Minutes	Total number of minutes the heat sink fan has been running, excluding the total number of days.
40842	Oh034A	Optional card	-	-	0 : None   9: CANopen

## Control Parameters

NOTE: These parameters are read and write.


Modbus Address		Parameter	Scale	Units	Values
Decimal	Hexadecimal				
40916	Oh0394	Torque limit negative reverse	0.1	\%	Regenerative torque limit in reverse direction
40917	Oh0395	Torque bias	0.1	\%	Torque bias

## Memory Control Area

NOTE: These parameters are read and write.

Modbus Address		Parameter	Scale	Units	Set on run	Function
Decimal	Hexadecimal					
40992	Oh03E0	Save parameters	-	-	YES	0: No, 1:YES
40993	Oh03E1	Monitor mode initialization		-	NO	$0:$ No, 1:YES
40994	Oh03E2	Initialize parameters	-	-	YES	0 : No, 1: All.   By groups:   2: Operation, 3: bA, 4:   Ad, $5: \mathrm{Cn}, 6$ : In ,   7: OU, 8: CM, 9: AP,   12: Pr, 13: M2.   Note: Setting is prohibited during fault trip interruptions.
40995	Oh03E3	Display changed parameters	-	-	NO	0: No, 1:YES
40997	Oh03E5	Delete fault history	-		NO	0: No, 1:YES
40998	Oh03E6	Delete user registered codes			NO	0: No, 1:YES
						Write: 0-9999
40999	Oh03E7	Hide parameter mode	0	Hex	NO	Read: 0: Unlock, 1: Lock
						Write: 0-9999
41000	Oh03E8	Lock parameter mode	0	Hex	NO	Read: 0: Unlock, 1: Lock
41001	Oh03E9	Easy parameter setup		-	NO	$0:$ No, 1:YES
41002	Oh03EA	Initialize power consumption		-	NO	0: No, 1:YES
41003	Oh03EB	Initialize operation accumulative time		-	NO	0: No, 1:YES
41004	Oh03EC	Initialize fan operation accumulative time		-	NO	0: No, 1: YES

## Programming Parameters

Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
0.00	Local speed	44353	Oh1101	dr. 19 to dr. 20	dr. 19 to dr. 20
dr. 2	Local torque	44354	Oh1102	-180.0 to 180.0\%	-1800 to 1800
ACC	Acceleration Ramp	44355	Oh1103	0.0 to 600.0s	0 to 6000
dEC	Deceleration Ramp	44356	Oh1104	0.0 to 600.0s	0 to 6000
drv	Control mode 1	44358	Oh1106	LOCAL REMOTE REMOTE2 MODBUS COMMS PLC	$\begin{aligned} & \hline 0 \\ & 1 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$
Frq	Speed reference 1	44359	Oh1107	LOCAL   V1   V2   12   MDBUS   COMMS   PLC   PULSE	$\begin{gathered} 0 \\ 2 \\ 4 \\ 4 \\ 5 \\ 6 \\ 6 \\ 8 \\ 9 \\ 9 \end{gathered}$
dr. 8	Torque reference 1	44360	Oh1108	LOCAL   V1   V2   12   MDBUS   COMMS   PLC   PULSE	$\begin{gathered} \hline 0 \\ 2 \\ 4 \\ 4 \\ 5 \\ 6 \\ 6 \\ 8 \\ 9 \\ 12 \\ \hline \end{gathered}$
dr. 9	Control type	44361	Oh1109	V/Hz SlipCom S-less1	$\begin{aligned} & 0 \\ & 2 \\ & 4 \\ & \hline \end{aligned}$
dr. 10	Torque control	44362	Oh110A	N/Y	$0 / 1$
dr. 11	Inch Frequency	44363	Oh110B	dr. 19 to dr. 20	dr. 19 to dr. 20
dr. 12	INCH acceleration time	44364	Oh110C	0.0 to 600.0s	0 to 6000
dr. 13	INCH deceleration time	44365	Oh110D	0.0 to 600.0s	0 to 6000


| Screen | Description | Modbus <br> Decimal | Address <br> Hexadecimal | Range |
| :--- | :--- | :--- | :--- | :--- | Modbus Range


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
dr. 80	Select ranges at power input	44432	Oh1150	Run Freq.	0
				Accel. Time	1
				Decel. Time	2
				Cmd Source	3
				Ref. Source	4
				Multistep 1	5
				MultiStep 2	6
				MultiStep 3	7
				Oupt. Curr.	8
				Motor RPM	9
				DC Voltage	10
				User Sel. 1	11
				Out of Order	12
				Sel. Run Dir.	13
				Oupt. Curr. 2	14
				Motor2 RPM	15
				DC Voltage2	16
				User Sel. 2	17
dr. 81	Select monitor code	44433	Oh1151	Volt V	0
				Pow kW	1
				Tq kgf	2
dr. 89	Display changed parameters	40995	Oh3E3	All	0
				Chang	1
dr. 90	ESC key function	44442	Oh115A	Mov. In. Pos.	0
				JOG Key	1
				Local/Rem.	2
dr. 91	Eloader function	44443	Oh115B	None	0
				Download	1
				Upload	2
dr. 93	Parameter initialization	44445	Oh115D	No	0
				All	1
				dr	2
				bA	3
				Ad	4
				Cn	5
				In	6
				OU	7
				CM	8
				AP	9
				Pr	12
				M2	13
				run	16


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
dr. 94	Register password	44446	Oh115E	0 to 9999	0 to 9999
dr. 95	Lock password	44447	Oh115F	0 to 9999	0 to 9999
dr. 97	Software version	44449	Oh1161	0 to 9999	0 to 9999
dr. 98	IO Software version	44450	Oh1162	0 to 65535	0 to 65535
dr. 99	Hardware version	44451	Oh1163	0 to 65535	0 to 65535
bA. 1	Alt Speed Ref	44609	Oh1201	$\begin{gathered} \hline \text { None } \\ \text { V1 } \\ \text { V2 } \\ \text { I2 } \\ \text { Pulse } \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 3 \\ & 4 \\ & 6 \end{aligned}$
bA. 2	Aux Calc Type	44610	Oh1202	$M+\left(G^{*} A\right)$ $M x\left(G^{*} A\right)$ $M /\left(G^{*} A\right)$ $M+\left[M^{*}\left(G^{*} A\right)\right]$ $M+G^{*} 2(A-50 \%)$ $M x\left[G^{*} 2(A-50 \%)\right.$ $M /\left[G^{*} 2(A-50 \%)\right]$ $M+M^{*} G^{*} 2(A-50 \%)$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 6 \\ & 7 \end{aligned}$
bA. 3	Aux. Ref. Gain	44611	Oh1203	-200.0 to 200.0	-2000 to 2000
bA. 4	Alt Ctrl Mode	44612	Oh1204		$\begin{aligned} & \hline 0 \\ & 1 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & \hline \end{aligned}$
bA. 5	Alt Speed Ref	44613	Oh1205	$\begin{gathered} \text { LOCAL } \\ \text { V1 } \\ \text { V2 } \\ \text { I2 } \end{gathered}$	$\begin{aligned} & 0 \\ & 2 \\ & 3 \\ & 4 \end{aligned}$
bA. 6	Torque Ref2	44614	Oh1206	MDBUS   COMMS   PLC   PULSE	$\begin{gathered} 6 \\ 8 \\ 8 \\ 9 \\ 12 \end{gathered}$
bA. 7	VIF Pattern	44615	Oh1207	Linear   Square   V/F Us   Square2	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
bA. 8	Ramp T Mode	44616	Oh1208	MaxFreq DeltaFreq	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
bA. 9	Time scale	44617	Oh1209	0.01 s	0
				0.1 s	1
				1s	2
bA. 10	Input Frequency	44618	Oh120A	60 Hz	0
				50 Hz	1
bA. 11	POLE Number	44619	Oh120B	2 to 48	2 to 48
bA. 12	Rated Slip	44620	Oh120C	0 to 3000rpm	0 to 3000
bA. 13	Motor Current	44621	Oh120D	1.0 to 200.0A	10 to 2000
bA. 14	No load Current	44622	Oh120E	0.5 to 200.0A	5 to 2000
bA. 15	Motor Voltage	44623	Oh120F	180 to 480V	180 to 480
bA. 16	Efficiency	44624	Oh1210	70 to 100\%	70 to 100
bA. 17	Inertia Rate	44625	Oh1211	0 to 8	0 to 8
bA. 18	Trim Power \%	44626	Oh1212	70 to 130\%	70 to 130
bA. 19	AC Input Volt	44627	Oh1213	170 to 230 V	170 to 230
				320 to 480V	320 to 480
bA. 20	Auto tuning	44628	Oh1214	None	0
				All	1
				Allst	2
				Rs+Lsig	3
				Tr	6
bA. 21	Stator Resistor	44629	Oh1215	Depend on motor settings	0 to 9999
bA. 22	Leak Inductor	44630	Oh1216		0 to 9999
bA. 23	Stator Inductor	44631	Oh1217		0 to 9999
bA. 24	Rotor Time Const	44632	Oh1218	25 to 5000ms	25 to 5000
bA. 25	Stator Ind. Sca.	44633	Oh1219	50 to 150\%	50 to 150
bA. 26	Rotor Ti Co Sca.	44634	Oh121A	50 to 150\%	50 to 150
bA. 31	Regen. Ind. Scl.	44639	Oh121F	70 to 100\%	70 to 100
bA. 41	User Frequency 1	44649	Oh1229	0.00 to dr. 20	0.00 to dr. 20
bA. 42	User Voltage 1	44650	Oh122A	0 to 100\%	0 to 100
bA. 43	User Frequency 2	44651	0h122B	0.00 to dr. 20	0.00 to dr. 20
bA. 44	User Voltage 2	44652	Oh122C	0 to 100\%	0 to 100
bA. 45	User Frequency 3	44653	Oh122D	0.00 to dr. 20	0.00 to dr. 20
bA. 46	User Voltage 3	44654	Oh122E	0 to 100\%	0 to 100
bA. 47	User Frequency 4	44655	Oh122F	0.00 to dr. 20	0.00 to dr. 20
bA. 48	User Voltage 4	44656	Oh1230	0 to 100\%	0 to 100
St1	Multi-Reference1	44658	Oh1232		
St2	Multi-Reference2	44659	Oh1233	0.00 to dr 20	00 to
St3	Multi-Reference3	44660	Oh1234	0.00 to dr. 20	0.00 to dr. 20
bA. 53	Multi-Reference4	44661	Oh1235		

POWER ELECTRONICS

Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
bA. 54	Multi-Reference5	44662	Oh1236		
St3	Multi-Reference6	44663	Oh1237		
bA. 56	Multi-Reference7	44664	Oh1238		
bA. 70	Acc Ramp 2	44678	Oh1246		
bA. 71	Decel Ramp 2	44679	Oh1247		
bA. 72	Acc Ramp 3	44680	Oh1248		
bA. 73	Decel Ramp 3	44681	Oh1249		
bA. 74	Acc Ramp 4	44682	Oh124A		
bA. 75	Decel Ramp 4	44683	Oh124B		
bA. 76	Acc Ramp 5	44684	Oh124C	0.0 to 600 . ${ }^{\text {s }}$	0 to 6000
bA. 77	Decel Ramp 5	44685	Oh124D	0.0 to 600.0s	0106000
bA. 78	Acc Ramp 6	44686	Oh124E		
bA. 79	Decel Ramp 6	44687	0h124F		
bA. 80	Acc Ramp 7	44688	Oh1250		
bA. 81	Decel Ramp 7	44689	Oh1251		
bA. 82	Acc Ramp 8	44690	Oh1252		
bA. 83	Decel Ramp 8	44691	Oh1253		
Ad. 1	Acceleration pattern	44865	Oh1301	Linear	0
Ad. 2	Deceleration pattern	44866	Oh1302	S-curve	1
Ad. 3	S curve start acceleration slope	44867	Oh1303	1 to 100\%	1 to 100
Ad. 4	S curve stop acceleration slope	44868	Oh1304	1 to 100\%	1 to 100
Ad. 5	S curve start deceleration slope	44869	Oh1305	1 to 100\%	1 to 100
Ad. $6{ }^{[9]}$	S curve stop deceleration slope	44870	Oh1306	1 to 100\%	1 to 100
Ad. 7	Motor start mode	44871	Oh1307	$\begin{gathered} \text { RAMP } \\ \text { DCSTART } \end{gathered}$	$0$
Ad. 8	Stop mode	44872	Oh1308	RAMP DC BRAKE SPIN POW BRKE	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 4 \end{aligned}$
Ad. 9	Allow speed inversion	44873	Oh1309	None FWDPrev REVPrev	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Ad. 10	Power-on Run	44874	Oh130A	$\begin{aligned} & \hline N \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$
Ad. 12	Time to DC Start	44876	Oh130C	0.00 to 60.00s	0 to 6000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
Ad. 13	Current injection DC start	44877	Oh130D	0 to 200\%	0 to 200
Ad. 14	Pre-DC Brake Time	44878	Oh130E	0.00 to 60.00 s	0 to 6000
Ad. 15	DC brake Time	44879	0h130F	0.00 to 60.00 s	0 to 6000
Ad. 16	Current level DC brake	44880	Oh1310	0 to 200\%	0 to 200
Ad. 17	Frequency start DC brake	44881	Oh1311	dr. 19 to 60.00	dr. 19 to 6000
Ad. 20	Acceleration dwell frequency	44884	Oh1314	dr. 19 to dr. 20	dr. 19 to dr. 20
Ad. 21	Acceleration dwell time	44885	Oh1315	0.0 to 60.0	0 to 600
Ad. 22	Deceleration dwell frequency	44886	Oh1316	dr. 19 to dr. 20	dr. 19 to dr. 20
Ad. 23	Deceleration dwell time	44887	Oh1317	0.0 to 60.0S	0 to 600
Ad. 24	Use frequency limit	44888	Oh1318	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{~S} \\ & \hline \end{aligned}$	$0$
Ad. 25	Frequency lower limit	44889	Oh1319	0.00 to Ad. 26	0 to Ad. 26
Ad. 26	Frequency higher limit	44890	Oh131A	Ad. 25 to dr. 20	Ad. 25 to dr. 20
Ad. 27	Jump frequency activation	44891	Oh131B	$\begin{gathered} \hline \mathrm{NO} \\ \mathrm{SI} \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
Ad. 28	Lower limit jump freq. 1	44892	Oh131C	0.00 to dr. 29	0 to dr. 29
Ad. 29	Upper limit jump freq. 1	44893	Oh131D	Ad. 28 to dr. 20	Ad. 28 to dr. 20
Ad. 30	Lower limit jump freq. $2$	44894	Oh131E	0.00 to dr. 31	0 to dr. 31
Ad. 31	Upper limit jump freq. $2$	44895	Oh131F	Ad. 30 to dr. 20	Ad. 30 to dr. 20
Ad. 32	Lower limit jump freq. 3	44896	Oh1320	0.00 to dr. 33	0 to dr. 33
Ad. 33	Upper limit jump freq. 3	44897	Oh1321	Ad. 32 to dr. 20	Ad. 32 to dr. 20
Ad. 41	Open brake current	44905	Oh1329	0.0 to 180.0\%	0 to 1800
Ad. 42	Delay before brake opening	44906	Oh132A	0.00 to 10.00s	0 to 1000
Ad. 44	Brake opening forward freq.	44908	Oh132C	0.00 to dr. 20	0 to dr. 20
Ad. 45	Brake opening reverse freq.	44909	Oh132D	0.00 to dr. 20	0 to dr. 20


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
Ad. 46	Delay before brake closing	44910	Oh132E	0.00 to 10.00s	0 to 1000
Ad. 47	Brake closing frequency	44911	Oh132F	0.00 to dr. 20	0 to dr. 20
Ad. 50	Minimum flux mode	44914	Oh1332	NONE   MANU   AUTO	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Ad. 51	Min. flux level in manual mode	44915	Oh1333	0 to 30\%	0 to 30
Ad. 60	Acceleration dwell frequency	44924	Oh133C	0.00 to dr. 20	0 to dr. 20
Ad. 64	Fan operating mode	44928	Oh1340	DuringRun   Always ON   Temp Ctrl	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Ad. 65	Save motorized potentiometer frequency	44929	Oh1341	$\begin{aligned} & \mathrm{N} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Ad. 66	Select comparator source	44930	Oh1342	$\begin{gathered} \hline \text { None } \\ \text { V1 } \\ \text { V2 } \\ \text { I2 } \\ \text { Pulse } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 3 \\ & 4 \\ & 6 \\ & \hline \end{aligned}$
Ad. 67	Output activation level comparator mode	44931	Oh1343	Ad. 68 a 100.00	Ad. 68 a 10000
Ad. 68	Output deactivation level comparator mode	44932	Oh1344	-100.00 a Ad. 67	-10000 a Ad. 67
Ad. 70	Safe operation selection	44934	Oh1346	Always Enable DI Dependent	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Ad. 71	Safe operation stop	44935	Oh1347	$\begin{gathered} \text { Free-Run } \\ \text { Q-Stop } \\ \text { Q-Stop Res } \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Ad. 72	Q-Stop Time	44936	Oh1348	0.0 to 600.0s	0 to 6000
Ad. 74	Enable regeneration prevention	44938	Oh134A	$\begin{aligned} & \hline \text { NO } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
Ad. 75	Regeneration prevention level	44939	Oh134B	$\begin{aligned} & 300 \text { to } 400 \mathrm{~V} \\ & 600 \text { to } 800 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 300 \text { to } 400 \\ & 600 \text { to } 800 \end{aligned}$
Ad. 76	Compare frequency limit	44940	Oh134C	0.00 to 10.00 Hz	0 to 1000
Ad. 77	$P$ gain regeneration prevention	44941	Oh134D	0.0 to 100.0\%	0 to 1000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
Ad. 78	I gain regeneration prevention	44942	Oh134E	0.0 to 3000.0 ms	0 to 30000
Ad. 80	Fire mode selection	44944	Oh1350	None Fire Mode Fire Mode Test	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Ad. 81	Fire mode frequency	44945	Oh1351	0.00 to 60.00 Hz	0 to 6000
Ad. 82	Fire mode direction	44946	Oh1352	Forward Reverse	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Cn. 4	Modulation frequency	45124	Oh1404	0.7 to 15.0	7 to 150
Cn. 5	Modulation mode	45125	Oh1405	Normal PWM LowLeakage PWM	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
Cn. 9	Pre-excitation time	45129	Oh1409	0.00 to 60.00s	0 to 6000
Cn. 10	Pre-excitation time	45130	Oh140A	100.0 to 500.0\%	1000 to 5000
Cn. 11	Power off delay	45131	Oh140B	0.00 to 60.00s	0 to 6000
Cn. 20	Sensorless control gain 2	45140	Oh1414	$\begin{aligned} & \hline \text { NO } \\ & \text { YES } \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Cn. 21	ASR proportional gain 1	45141	Oh1415	0 to 5000\%	0 to 5000
Cn. 22	ASR integral time 1	45142	Oh1416	10 to 9999ms	10 to 9999
Cn. 23	Independent controller prop. gain 2	45143	Oh1417	1.0 to 1000.0\%	10 to 10000
Cn. 24	Indep. controller integral gain 2	45144	Oh1418	1.0 to 1000.0\%	10 to 10000
Cn. 25	Integral time sensorless contr.	45145	Oh1419	10 to 999ms	10 to 9999
Cn. 26	Flux estimator proportional gain	45146	Oh141A	1 to 200\%	1 to 200
Cn. 27	Flux estimator integral gain	45147	Oh141B	1 to 200\%	1 to 200
Cn. 28	Speed estimator prop. gain 1	45148	Oh141C	0 to 32767	0 to 32767
Cn. 29	Speed estimator integral gain 1	45149	Oh141D	100 to 1000	100 to 1000
Cn. 30	Speed estimator integral gain 2	45150	Oh141E	100 to 10000	100 to 10000
Cn. 31	Sensorless cont. prop. gain	45151	Oh141F	10 to 1000	10 to 1000
Cn. 32	Sensorless cont. integral gain	45152	Oh1420	10 to 1000	10 to 1000
Cn. 48	Controller P gain	45168	Oh1430	10 to 10000	10 to 10000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
Cn. 49	Controller I gain	45169	Oh1431	10 to 10000	10 to 10000
Cn. 52	Output filter vector	45172	Oh1434	0 to 2000 ms	0 to 2000
Cn. 53	Torque limit reference	45173	Oh1435	LOCAL   V1   V2   12   MDBUS COMMS   PLC   Pulse	$\begin{gathered} \hline 0 \\ 2 \\ 4 \\ 5 \\ 5 \\ 6 \\ 8 \\ 9 \\ 9 \\ 12 \\ \hline \end{gathered}$
Cn. 54	Forward positive torque limit	45174	Oh1436	0.0 to 200.0\%	0 to 2000
Cn. 55	Forward negative torque limit	45175	Oh1437	0.0 to 200.0\%	0 to 2000
Cn. 56	Reverse positive torque limit	45176	Oh1438	0.0 to 200.0\%	0 to 2000
Cn. 57	Reverse negative torque limit	45177	Oh1439	0.0 to 200.0\%	0 to 2000
Cn. 62	Speed limit reference	45182	Oh143E	$\begin{gathered} \hline \text { LOCAL } \\ \text { V1 } \\ \text { V2 } \\ \text { I2 } \\ \text { MDBUS } \\ \text { COMMS } \\ \text { PLC } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 2 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & \hline \end{aligned}$
Cn. 63	Forward speed limit	45183	0h143F	0.00 to 400.00 Hz	0 to 40000
Cn. 64	Reverse speed limit	45184	Oh1440	0.00 to 400.00 Hz	0 to 40000
Cn. 65	Speed limit gain	45185	Oh1441	100 to 5000\%	100 to 5000
Cn. 70	Speed search mode selection	45190	Oh1446	Flying Start1 Flying Start2	$\begin{aligned} & 0 \\ & 1 \\ & \hline \end{aligned}$
Cn. 71	Search mode	45191	Oh1447	00 to 15	0 to 15
Cn.72 ${ }^{\text {] }}$	Speed search mode current	45192	Oh1448	80 to 200\%	80 to 200
Cn. 73	Speed search mode prop. gain	45193	Oh1449	0 to 9999	0 to 9999
Cn. 74	Speed search integral gain	45194	Oh144A	0 to 9999	0 to 9999
Cn. 75	Speed search delay	45195	Oh144B	0.0 to 60.0s	0 to 600


Screen	Description	Modbus   Decimal	Address Hexadecimal	Range	Modbus Range
Cn. 76	Speed estimator gain	45196	Oh144C	50 to 150\%	50 to 150
Cn. 77	KEB Select	45197	Oh144D	$\begin{gathered} \hline \text { No } \\ \text { KEB1 } \\ \text { KEB2 } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Cn. 78	Initial value for KEB operation	45198	Oh144E	110.0 to 200.0\%	1100 to 2000
Cn. 79	Value to stop KEB operation	45199	Oh144F	Cn. 78 to 210.0\%	Cn. 78 to 2100
Cn. 80	KEB proportional gain	45200	Oh1450	1 to 20000	1 to 20000
Cn. 81	KEB integral gain	45201	Oh1451	1 to 20000	1 to 20000
Cn. 82	Energy buffering Slip gain	45202	Oh1452	0 to 2000.0\%	0 to 20000
Cn. 83	Energy buffering acceleration time	45203	Oh1453	0.0 to 600.0 s	0 to 6000
Cn. 85	Flux proportional gain 1	45205	Oh1455	100 to 700	100 to 700
Cn. 86	Flux proportional gain 2	45206	Oh1456	0 to 100	0 to 100
Cn. 87	Flux proportional gain 3	45207	Oh1457	0 to 500	0 to 500
Cn. 88	Flux integral gain 1	45208	Oh1458	0 to 200	0 to 200
Cn. 89	Flux integral gain 2	45209	Oh1459	0 to 200	0 to 200
Cn. 90	Flux integral gain 3	45210	Oh145A	0 to 200	0 to 200
Cn. 91	SL voltage compensation 1	45211	Oh145B	0 to 60	0 to 60
Cn. 92	SL voltage compensation 2	45212	Oh145C	0 to 60	0 to 60
Cn. 93	SL voltage compensation 3	45213	Oh145D	0 to 60	0 to 60
Cn. 94	SL fluctuation frequency	45214	Oh145E	80.0 to 110.0\%	800 to 1100
Cn. 95	SL switching frequency	45215	Oh145F	0.00 to 8.00 Hz	0 to 800
In. 1	Analog input max. freq	45377	Oh1501	dr. 19 to dr. 20	dr. 19 to dr. 20
$\ln .2$	Analog input max. torque	45378	Oh1502	0.0 to 200.0	0 to 2000

POWER ELECTRONICS SD300

Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
In. 5	V1 Monitor	45381	Oh1505	0.00 to 12.00\%	0 to 1200
In. 6	V1 polarity	45382	Oh1506	$\begin{gathered} \hline-10 \mathrm{~V} \\ -1+10 \mathrm{~V} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$
In. 7	V1 filter	45383	Oh1507	0 to 10000 ms	0 to 10000
In. 8	V1 minimum voltage	45384	Oh1508	0.00 to 10.00 V	0 to 1000
In. 9	V1 minimum reference	45385	Oh1509	0.00 to 100.00\%	0 to 10000
In. 10	V1 maximum voltage	45386	Oh150A	0.00 to 10.00 V	0 to 1000
In. 11	V1 maximum reference	45387	Oh150B	0.00 to 100.00\%	0 to 10000
In. 12	V1 minimum negative voltage	45388	Oh150C	-10.00 to 0.00V	-1000 to 0
In. 13	V1 minimum negative reference	45389	Oh150D	-100.00 to 0.00\%	-10000 to 0
In. 14	V1 maximum negative voltage	45390	Oh150E	-10.00 to 0.00V	-1000 to 0
In. 15	V1 maximum neg. reference	45391	Oh150F	-100.00 to 0.00\%	-10000 to 0
In. 16	V1 Inverting	45392	Oh1510	$\begin{aligned} & \hline \text { NO } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
In. 17	Adjust V1 quantification	45393	Oh1511	0.04 to 10.00\%	4 to 1000
In. 35	V2 Monitor	45411	Oh1523	0.00 to 12.00 V	0 to 1200
In. 37	V2 filter	45413	Oh1525	0 to 10000 ms	0 to 10000
In. 38	V2 minimum voltage	45414	Oh1526	0.00 to 10.00 V	0 to 1000
In. 39	V2 minimum reference	45415	Oh1527	0.00 to 100.00\%	0 to 10000
In. 40	V2 maximum voltage	45416	Oh1528	0.00 to 10.00 V	0 to 1000
In. 41	V2 maximum reference	45417	Oh1529	0.00 to 100.00\%	0 to 10000
In. 46	V2 Inverting	45422	Oh152E	$\begin{aligned} & \hline \text { NO } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
$\ln .47$	Adjust 12 visualization	45423	0h152F	0.04 to 10.00\%	4 to 1000
In. 50	12 Monitor	45426	Oh1532	0.00 to 24.00 mA	0 to 2500
In. 52	12 filter	45428	Oh1534	0 to 10000 ms	0 to 10000
In. 53	12 minimum current	45429	Oh1535	0.00 to 20.00 mA	0 to 2000
In. 54	12 minimum reference	45430	Oh1536	0.00 to 100.00\%	0 to 10000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
In. 55	12 maximum current	45431	Oh1537	0.00 to 24.00 mA	0 to 1000
In. 56	12 maximum reference	45432	Oh1538	0.00 to 100.00	0 to 10000
In. 61	12 Inverting	45437	Oh153D	$\begin{aligned} & \bar{N} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
In. 62	Adjust I2 visualization	45438	Oh153E	0.04 to 10.00\%	4 to 1000
In. 65	Digital input 1	45441	Oh1541	None START(+) START(-) RESET	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
In. 66	Digital input 2	45442	Oh1542	EXT TRIP DIS START INCH 1 SPEED-L SPEED-M	$\begin{aligned} & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \end{aligned}$
In. 67	Digital input 3	45443	Oh1543	$\begin{gathered} \text { SPEED-H } \\ \text { XCEL-L } \\ \text { XCEL-M } \\ \text { RUN Enable } \end{gathered}$	$\begin{gathered} 9 \\ 11 \\ 12 \\ 13 \end{gathered}$
In. 68	Digital input 4	45444	Oh1544	3-WIRE CTR/REF 2   Exchange UP	$\begin{aligned} & 14 \\ & 15 \\ & 16 \\ & 17 \end{aligned}$
In. 69	Digital input 5	45445	Oh1545	DOWN RESERVED POT CLEAR AnalogHLD PIDOPLoop	$\begin{aligned} & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \end{aligned}$
$\ln .70$	Digital input 6	45446	Oh1546	P Gain 2 XCEL Stop 2nd Motor Pre-Excit	$\begin{aligned} & 24 \\ & 25 \\ & 26 \\ & 34 \end{aligned}$
$\ln .71$	Digital input 7	45447	Oh1547	Timer IN disAuxRef. INCH(+) $\mathrm{INCH}(-)$ XCEL-H PLC   Fire Mode KEB1 Sel TI	$\begin{aligned} & 38 \\ & 40 \\ & 46 \\ & 47 \\ & 49 \\ & 50 \\ & 51 \\ & 52 \\ & 54 \end{aligned}$
In. 85	Digital input activation delay	45461	Oh1555	0 to 10000 ms	0 to 10000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
In. 86	Digital input deactivation delay	45462	Oh1556	0 to 10000ms	0 to 10000
In. 87	Digital input contact type	45463	Oh1557	0: Contact normally open (NO)   1: Contact normally closed (NC)	0000 to 1111
$\ln .89$	Di Scan Time	45465	Oh1559	1 to 5000ms	1 to 5000
In. 90	Digital inputs status	45466	Oh155A	0 : Disabled   1: Enabled	0000 to 1111
$\ln .91$	Tl Monitor	45467	Oh155B	0.00 to 50.00 kHz	0 to 5000
In. 92	TI Filter	45468	Oh155C	0 to 9999	0 to 9999
In. 93	TI minimum input frequency	45469	Oh155D	0.00 to 32.00 kHz	0 to 3200
In. 94	TI minimum input frequency percentage	45470	Oh155E	0.00 to 100.00\%	0 to 10000
In. 95	TI maximum input frequency	45471	Oh155F	0.00 to 32.00 kHz	0 to 3200
In. 96	TI maximum input frequency percentage	45472	Oh1560	0.00 to 100.00\%	0 to 10000
In. 97	Tl Inverting	45473	Oh1561	$\begin{aligned} & \hline \text { NO } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
In. 98	TI noise reduction level	45474	Oh1562	0.04 to 10.00\%	4 to 1000
$\ln .99$	Input mode setting	45475	Oh1563	$\begin{aligned} & \hline \text { V2, NPN } \\ & \text { V2, PNP } \\ & \text { I2, NPN } \\ & \text { I2, PNP } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
OU. 1	Analog output 1 mode selection	45633	Oh1601	Frequency	0
				O/pCurr	1
				O/pVolt	2
				DCLinkV	3
				Torque	4
				O/pPower	5
				Idse	6
				lqse	7
				TargetFq	8
				RampFreq	9
				Speed Fdb	10
				PIDRefVal	12
				PIDFdbVal	13
				PIDO/p	14
				Constant	15
OU. 2	Analog output 1 gain	45634	Oh1602	$\begin{aligned} & \hline-1000.0 \text { to } \\ & 1000.0 \% \\ & \hline \end{aligned}$	-10000 to 10000
OU. 3	Analog output 1 offset	45635	Oh1603	-100.0 to 100.0\%	-1000 to 1000
OU. 4	Analog output 1 filter	45636	Oh1604	0 to 10000 ms	0 to 10000
OU. 5	Analog output 1 constant	45637	Oh1605	0.0 to 100.0\%	0 to 1000
OU. 6	Analog output 1 monitor	45638	Oh1606	0.0 to 1000.0\%	0 to 10000
OU. 30	Relay fault output	45662	Oh161E	Low voltage	001
				Other than low voltage	010
				Automatic restart	100
OU. 31	Relay 1 control source	45663	Oh161F	None	0
				FDT-1	1
				FDT-2	2
				FDT-3	3
				FDT-4	4
				OverLoad	5
				IOL	6
				UndrLoad	7
				VentWarn	8
				Stall	9
				OverVolt	10
				LowVolt	11
				OverHeat	12


| Screen | Description | Modbus <br> Decimal | Address <br> Hexadecimal | Range |
| :--- | :--- | :--- | :--- | :--- | Modbus Range.


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
OU. 58	Relay FDT band	45690	Oh163A	0.00 to dr. 20	0 to dr. 20
OU.61	Pulse output mode	45693	Oh163D	Frequency	0
				O/pCurr	1
				O/pVolt	2
				DCLinkV	3
				Torque	4
				O/pPower	5
				Idse	6
				lqse	7
				TargetFq	8
				RampFreq	9
				Speed Fdb	10
				PIDRefVal	12
				PIDFdbVal	13
				PIDO/p	14
				Constant	15
OU. 62	Pulse output gain	45694	Oh163E	$\begin{gathered} -1000.0 \text { to } \\ 1000.0 \% \\ \hline \end{gathered}$	-10000 to 10000
OU.63	Pulse output offset	45695	0h163F	-100.0 to 100.0\%	-1000 to 1000
OU. 64	Pulse output filter	45696	Oh1640	0 to 10000 ms	0 to 10000
OU. 65	Pulse output constant setting	45697	Oh1641	0.0 to 100.0\%	0 to 1000
OU.66	Pulse output monitor	45698	Oh1642	0.0 to 1000.0\%	0 to 10000
CM. 1	Slave address	45889	Oh1701	1 to 250	1 to 250
CM. 2	RS-485 communication protocol	45890	Oh1702	Modbus PE BUS 485	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
CM. 3	Baud Rate	45891	Oh1703	1200 bps	0
				2400 bps	1
				4800 bps	2
				9600 bps	3
				19200 bps	4
				38400 bps	5
				56 Kbps	6
				115 Kbps	7
CM. 4	Communication frame structure	45892	Oh1704	D8/PN/S1	0
				D8/PN/S2	1
				D8/PE/S1	2
				D8/PO/S1	3
CM. 5	Response delay	45893	Oh1705	0 to 100.0 ms	0 to 1000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
CM. 6	Communication option S/W version	-	Oh1706	-	-
CM. 7	Communication option ID	-	Oh1707	0 to 255	0 to 255
CM. 8	Card baud rate	-	Oh1708	-	-
CM. 9	Comm. option LED status	-	Oh1709	-	-
CM. 30	Output parameters number	-	Oh171E	0 to 8	0 to 8
CM. 31	Output communication addresses 1 to 8	-	0h171F	0000 to FFFF	0000 to FFFF
CM. 32		-	Oh1720		
CM. 33		-	Oh1721		
CM. 34		-	Oh1722		
CM. 35		-	Oh1723		
CM. 36		-	Oh1724		
CM. 37		-	Oh1725		
CM. 38		-	Oh1726		
CM. 50	Number of input parameters	-	Oh1732	0 to 8	0 to 8
CM. 51	Input communication addresses 1 to 8	-	Oh1733	0000 to FFFF	0000 to FFFF
CM. 52		$\cdot$	Oh1734		
CM. 53		-	Oh1735		
CM. 54		-	Oh1736		
CM. 55		-	Oh1737		
CM. 56		-	Oh1738		
CM. 57		-	Oh1739		
CM. 58		-	Oh173A		
CM. 68	Field bus data swap	-	Oh1744	$\begin{aligned} & \text { NO } \\ & \text { YFS } \end{aligned}$	$0$
CM. 70	Communication multifunction input 1 to 7	-	Oh1746	None	0
				START(+)	1
				START(-)	2
				RESET	3
				EXTTRIP	4
CM. 71		-	Oh1747	DISSTART	5
				INCH1	6
				SPEED-L	7
				SPEED-M	8


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
CM. 72		-	Oh1748	SPEED-H	9
				XCEL-L	11
				XCEL-M	12
				RUNEnable	13
				3-WIRE	14
CM. 73		-	Oh1749	CTR/REF2	15
				Exchange	16
				UP	17
CM. 74		-	Oh174A	DOWN	18
				POTCLEAR	20
				AnalogHLD	21
		-	Oh174B	I-Term Clear	22
CM. 75				PIDOPLoop	23
				PGain2	24
				XCELStop	25
CM. 76		-	Oh174C	2ndMotor	26
				Pre-Excit	34
				Timerin	38
CM. 77		-	Oh174D	disAuxRef.	40
				INCH(+)	46
				INCH(-)	47
				XCEL-H	49
				PLC	50
				FireMode	51
				KEB1Sel	52
				TI	54
CM. 86	Communication multifunction input monitor	-	Oh1756	-	-
CM. 90	Data frame comm.	-	Oh175A	PE BUS 485	0
	monitor			Rem. display	1
CM. 91	Received data frames counter	-	Oh175B	0 to 65535	0 to 65535
CM. 92	Frames with error counter	-	Oh175C	0 to 65535	0 to 65535
CM. 93	NAK frames counter	-	Oh175D	0 to 65535	0 to 65535
CM. 94	Communications	$\bullet$	-	NO	0
	update			YES	1


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
CM. 95	P2P communication selection	-	Oh1760	Disable All P2P Master P2P Slave M-KPD Ready	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & 3 \end{aligned}$
CM. 96	Digital output selection	-	-	Analog output Multi-function relay Multi-function output	$\begin{aligned} & 001 \\ & 010 \\ & 100 \end{aligned}$
AP. 1	Application function selection	46145	Oh1801	None Proc PID	$\begin{aligned} & 0 \\ & 2 \\ & \hline \end{aligned}$
AP. 2	Enable PLC mode	-	-	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{Y} \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
AP. 16	PID output	46160	Oh1810	$\begin{gathered} \hline-327.68 \text { to } \\ 327.68 \% \\ \hline \end{gathered}$	32768 to 32768
AP. 17	PID reference	46161	Oh1811	$\begin{gathered} \hline-327.68 \text { to } \\ 327.68 \% \\ \hline \end{gathered}$	32768 to 32768
AP. 18	PID feedback	46162	Oh1812	$\begin{aligned} & \hline-327.68 \text { to } \\ & 327.68 \% \\ & \hline \end{aligned}$	32768 to 32768
AP. 19	PID local	46163	Oh1813	$\begin{gathered} \hline-100.00 \text { to } \\ 100.00 \% \\ \hline \end{gathered}$	10000 to 10000
AP. 20	Select PID regulator source	46164	Oh1814	MREF V1 V2 I2 MODBUS COMMS PLC PULSE	$\begin{gathered} \hline 0 \\ 1 \\ 3 \\ 4 \\ 4 \\ 5 \\ 7 \\ 8 \\ 11 \\ \hline \end{gathered}$
AP. 21	Select feedback signal source	46165	Oh1815	V1 V2 I2 MODBUS COMMS PLC PULSE	$\begin{gathered} \hline 0 \\ 2 \\ 3 \\ 4 \\ 4 \\ 6 \\ 7 \\ 10 \\ \hline \end{gathered}$
AP. 22	PID controller proportional gain	46166	Oh1816	0.0 to 1000.0\%	0 to 10000
AP. 23	PID controller integration time	46167	Oh1817	0 to 200.0s	0 to 2000
AP. 24	PID controller differential time	46168	Oh1818	0.0 to 10000 ms	0 to 10000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
AP. 25	PID output fine adjustment	46169	Oh1819	0.0 to 1000.0\%	0 to 10000
AP. 26	Proportional gain scale	46170	Oh181A	0.0 to 100.0\%	0 to 1000
AP. 27	PID Filter	46171	Oh181B	0 to 10000ms	0 to 10000
AP. 28	PID Mode	46172	Oh181C	Process Normal	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
AP. 29	Upper limit PID output	46173	Oh181D	AP. 30 to 300.00 Hz	AP. 30 to 30000
AP. 30	Lower limit PID output	46174	Oh181E	$\begin{gathered} -300.00 \mathrm{~Hz} \text { to } \\ \text { AP. } 29 \\ \hline \end{gathered}$	30000 to AP. 29
AP. 31	Invert PID	46175	Oh181F	$\begin{gathered} \hline \text { NO } \\ \text { YES } \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
AP. 32	PID output scale	46176	Oh1820	0.1 to 1000.0\%	1 to 10000
AP. 34	PrePID reference	46178	Oh1822	0.00 to dr. 20	0 to dr. 20
AP. 35	PrePID end reference	46179	Oh1823	0.0 to 100.0\%	0 to 1000
AP. 36	PrePID delay	46180	Oh1824	0 to 9999s	0 to 9999
AP. 37	Sleep mode activation delay	46181	Oh1825	0.0 to 999.9s	0 to 9999
AP. 38	Sleep mode activation speed	46182	Oh1826	0.00 Hz to dr. 20	0 to dr. 20
AP. 39	Awakening level	46183	Oh1827	0 to 100\%	0 to 100
AP. 40	PID WakeUp Mode	46184	Oh1828	Below   Above   Beyond	$\begin{aligned} & 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
AP. 42	PID unit	46186	Oh182A	$\%$ Bar BBar Pa kPa Hz rpm V I kW HP ${ }^{\circ} \mathrm{C}$ ${ }^{\circ} \mathrm{F}$	$\begin{gathered} \hline 0 \\ 1 \\ 2 \\ 2 \\ 3 \\ 4 \\ 5 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 10 \\ 11 \\ 12 \\ \hline \end{gathered}$
AP. 43	PID unit gain	46187	Oh182B	$\begin{gathered} 0.00 \text { to } \\ 300.00 \% \end{gathered}$	0 to 30000


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
AP. 44	PID scale unit	46188	Oh182C	x100	0
				x10	1
				$\times 1$	2
				$x 0.1$	3
				$\times 0.01$	4
AP. 45	Proportional gain	46189	Oh182D	0.0 to 1000.0\%	0 to 10000
Pr. 4	Load duty type	46916	0h1B04	NRML HEVY	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr. 5	Phase loss type	46917	Oh1B05	NONE	0
				OUTPUT	1
				INPUT	2
				ALL	3
Pr. 6	Ripple voltage	46918	Oh1B06	1 to 100V	1 to 100
Pr. 7	Fault deceleration time	46919	0h1B07	0.0 to 600.0s	0 to 6000
Pr. 8	Start after restart	46920	0h1B08	N	0
				Y	1
Pr. 9	Retry attempts number	46921	Oh1B09	0 to 10	0 to 10
Pr. 10	Retry delay	46922	Oh1B0A	0.0 to 60.0s	0 to 600
Pr. 12	Response in case of a speed reference loss	46924	Oh1B0C	None	0
				Free-Run	1
				Dec	2
				Hold Input	3
				Hold Output	4
				Lost Preset	5
Pr. 13	Lost reference delay	46925	Oh1B0D	0.1 to 120.0s	0 to 1200
Pr. 14	Reference for lost reference	46926	Oh1B0E	(dr. 19 to dr.20)	(dr. 19 to dr.20)
Pr. 15	Al Lost Level	46928	0h1B10	Half Below	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr. 17	Overload warning select	46929	0h1B11	$\begin{aligned} & \hline \text { NO } \\ & \text { YES } \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr. 18	Overload warning level	46930	0h1B12	30 to 180\%	30 to 180
Pr. 19	Overload warning time	46931	0h1B13	0.0 to 30.0s	0 to 300
Pr. 20	Overload trip select	46932	0h1B14	None	0
				Free-Run	1
				Dec	2
Pr. 21	Overload level	46933	0h1B15	30 to 200\%	30 to 200
Pr. 22	Overload trip time	46934	0h1B16	0.0 to 60.0s	0 to 600


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
Pr. 25	Enable underload	46937	Oh1B19	$\begin{gathered} \hline \text { NO } \\ \text { YES } \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr. 26	Underload warning delay	46938	Oh1B1A	0.0 to 600.0s	0 to 6000
Pr. 27	Underload fault mode	46939	Oh1B1B	$\begin{gathered} \hline \text { None } \\ \text { Free-Run } \\ \text { Dec } \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Pr. 28	Underload fault delay	46940	0h1B1C	0.0 to 600.0s	0 to 6000
Pr. 29	Underload minimum level	46941	Oh1B1D	10 to 100\%	10 to 100
Pr. 30	Underload maximum level	46942	Oh1B1E	10 to 100\%	10 to 100
Pr. 31	Action in case no motor is detected	46943	Oh1B1F	$\begin{gathered} \hline \text { None } \\ \text { Free-Run } \\ \text { Dec } \\ \hline \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \\ & 2 \end{aligned}$
Pr. 32	No motor fault level	46944	Oh1B20	1 to 100\%	1 to 100
Pr. 33	No motor fault delay	46945	0h1B21	0.1 to 10.0s	1 to 100
Pr. 40	Action in case of thermo-electronic fault	46952	Oh1B28	$\begin{gathered} \hline \text { None } \\ \text { Free-Run } \\ \text { Dec } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Pr. 41	Motor cooling mode at zero speed	46953	Oh1B29	$\begin{gathered} \text { SELF } \\ \text { FORCED } \end{gathered}$	$\begin{aligned} & 0 \\ & 1 \end{aligned}$
Pr. 42	Overcurrent level during 1 min	46954	Oh1B2A	120 to 200\%	120 to 200
Pr. 43	Continuous overcurrent level	46955	Oh1B2B	50 to 150\%	50 to 150
Pr. 45	Free run trip mode	46957	Oh1B2D	FreeRun Dec	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$
Pr. 50	Stall prevention	46962	Oh1B32	Accelerating At constant speed At deceleration FluxBraking	$\begin{aligned} & \hline 00 \\ & 01 \\ & 10 \\ & 11 \\ & \hline \end{aligned}$
Pr. 51	Speed for stall protection 1	46963	Oh1B33	dr. 19 to Pr. 53 Hz	dr. 19 to Pr. 53
Pr. 52	Level for stall protection 1	46964	Oh1B34	30 to 250\%	30 to 250
Pr. 53	Speed for stall protection 2	46965	Oh1B35	In. 55 to Pr. 55 Hz	In. 55 to Pr. 55
Pr. 54	Level for stall protection 2	46966	Oh1B36	30 to 250\%	30 to 250

POWER ELECTRONICS

Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
Pr. 55	Speed for stall protection 3	46967	Oh1B37	In. 53 to Pr. 57 Hz	In. 53 to Pr. 57
Pr. 56	Level for stall protection 3	46968	Oh1B38	30 to 250\%	30 to 250
Pr. 57	Speed for stall protection 4	46969	Oh1B39	In. 55 to dr. 20 Hz	In. 55 to dr. 20
Pr. 58	Level for stall protection 4	46970	Oh1B3A	30 to 250\%	30 to 250
Pr. 59	Flux braking gain	46971	Oh1B3B	0 to 150\%	0 to 150
Pr. 60	CAP diagnosis level	46972	Oh1B3C	0 to 100\%	0 to 100
Pr. 61	Capacitor diagnosis mode	46973	Oh1B3D	Nonde   RefDiag   PreDiag   InitDiag	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$
Pr. 62	CAP exchange warning level	46974	Oh1B3E	0.0 to 95.0\%	0 to 950
Pr. 63	Capacitance reference	46975	Oh1B3F	0.0 to 100.0\%	0 to 1000
Pr. 66	Braking resistor configuration	46978	Oh1B42	0 to 30\%	0 to 30
Pr. 73	Speed deviation fault	46946	Oh1B22	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{Y} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$
Pr. 74	Speed deviation band	46947	Oh1B23	1 to 20	1 to 20
Pr. 75	Speed deviation time	46948	0h1B24	1 to 120	1 to 120
Pr. 79	Action in case of fan trip	46991	Oh1B4F	Trip Warn	$\begin{aligned} & \hline 0 \\ & 1 \end{aligned}$
Pr. 80	Optional card trip mode	46992	Oh1B50	None Free-Run Dec	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & \hline \end{aligned}$
Pr. 81	Low voltage trip delay	46993	Oh1B51	0.0 to 60.0s	0 to 600
Pr. 82	Enable low voltage trip	46994	Oh1B52	$\begin{gathered} \hline \text { NO } \\ \text { YES } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & \hline \end{aligned}$
Pr. 86	Fan use percentage	46998	Oh1B56	0.0 to 100.0\%	0 to 1000
Pr. 87	Fan exchange warning level	46999	Oh1B57	0.0 to 100.0\%	0 to 1000
Pr. 88	Fan time reset	47000	Oh1B58	$\begin{aligned} & \hline \mathrm{N} \\ & \mathrm{Y} \\ & \hline \end{aligned}$	$0$
Pr. 89	CAP fan status	47001	Oh1B59	None CAP warning FAN warning	$\begin{aligned} & \hline 00 \\ & 01 \\ & 10 \\ & \hline \end{aligned}$
Pr. 90	Warning information	47003	Oh1B5A	-	-


| Screen | Description | Modbus <br> Decimal | Address <br> Hexadecimal | Range | Modbus Range |
| :--- | :--- | :---: | :--- | :---: | :---: | :---: |
| Pr.91 | Fifth fault | 47004 | Oh1B5B | - | - |
| Pr.92 | Fourth fault | 47005 | Oh1B5C | - | - |
| Pr.93 | Third fault | 46917 | Oh1B04 | - | - |
| Pr.94 | Second fault | 46918 | Oh1B05 | - | - |
| Pr.95 | First fault | 46919 | 0h1B06 | - | - |
| Pr.96 | Reset fault history | 46920 | 0h1B07 | 0 to 1 | 0 to 1 |
| M2.4 | Motor 2 acceleration <br> ramp | 47172 | Oh1C04 | 0.0 to 600.0s | 0 to 6000 |
| M2.5 | Motor 2 deceleration <br> ramp | 47173 | Oh1C05 | 0.0 to 600.0s | 0 to 6000 |

M2.6 Motor 2 rated power
47174 Oh1C06
$0.2 \mathrm{~kW} \quad 0$
$0.4 \mathrm{~kW} \quad 1$
$0.75 \mathrm{~kW} \quad 2$
$1.1 \mathrm{~kW} \quad 3$
$1.5 \mathrm{~kW} \quad 4$
2.2kW 5
3.0kW 6
3.7kW 7
4.0kW 8
$5.5 \mathrm{~kW} \quad 9$
7.5kW 10
11.0kW 11
15.0kW 12
18.5kW 13
22.0kW 14
$30.0 \mathrm{~kW} \quad 15$

M2.7	Motor 2 frequency	47175	Oh1C07	30.00 to 400.00 Hz	3000 to 40000
M2.8	Control type selection	47176	Oh1C08	V/Hz	0
				SlipCom	2
				S-less1	4
M2.10	Poles number	47178	Oh1C0A	2	2
				4	4
				48	48


M2.11	Rated slip	47179	Oh1C0B	0 to 3000rpm	0 to 3000
M2.12	Motor nominal current	47180	Oh1C0C	1.0 to 200.0A	10 to 2000
M2.13	No load current	47181	Oh1C0D	0.5 to 200.0A	5 to 2000
M2.14	Motor 2 voltage	47182	Oh1C0E	180 to 480V	180 to 480
M2.15	Motor 2 efficiency	47183	Oh1C0F	70 to 100\%	70 to 100
M2.16	Motor 2 inertia rate	47184	Oh1C10	0 to 8	0 to 8


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
M2.17	Stator resistor	47185	Oh1C11		0 to 9999
M2.18	Leak inductor	47186	Oh1C12	Depend on motor	0 to 9999
M2.19	Stator inductor	47187	Oh1C13		0 to 9999
M2.20	Rotor time constant	47188	Oh1C14	25 to 5000 ms	5000
M2.25	V/F pattern	47193	Oh1C19	Linear Square VIF User Square2	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & \hline \end{aligned}$
M2.26	Torque in forward direction	47194	Oh1C1A	0.0 to 15.0\%	0 to 150
M2.27	Torque in reverse direction	47195	Oh1C1B	0.0 to 15.0\%	0 to 150
M2.28	Stall prevention level motor 2	47196	Oh1C1C	30 to 150\%	30 to 150
M2.29	Motor 2 overcurrent level 1 min	47197	Oh1C1D	100 to 200\%	100 to 200
M2.30	Motor 2 continuous overcurrent	47198	Oh1C1E	50 to 150\%	50 to 150
US. 1	PLC operation mode	47425	Oh1D01	$\begin{gathered} \text { Stop } \\ \text { Run } \\ \text { Run DI } \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \end{aligned}$
US. 2	PLC loop time	47426	Oh1D02	$\begin{gathered} \hline 0.01 \mathrm{~s} \\ 0.02 \mathrm{~s} \\ 0.05 \mathrm{~s} \\ 0.1 \mathrm{~s} \\ 0.5 \mathrm{~s} \\ 1 \mathrm{~s} \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0 \\ & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & \hline \end{aligned}$
US. 11	Output link address PLC func. 1	47435	Oh1D0B	0 to 65535	0 to 65535
US. 12	Output link address PLC func. 2	47436	Oh1D0C	0 to 65535	0 to 65535
US. 13	Output link address PLC func. 3	47437	Oh1D0D	0 to 65535	0 to 65535
US. 14	Output link address PLC func. 4	47438	Oh1D0E	0 to 65535	0 to 65535
US. 15	Output link address PLC func. 5	47439	Oh1D0F	0 to 65535	0 to 65535
US. 16	Output link address PLC func. 6	47440	Oh1D10	0 to 65535	0 to 65535


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
US. 17	Output link address PLC func. 7	47441	Oh1D11	0 to 65535	0 to 65535
US. 18	Output link address PLC func. 8	47442	Oh1D12	0 to 65535	0 to 65535
US. 19	Output link address PLC func. 9	47443	Oh1D13	0 to 65535	0 to 65535
US. 20	Output link addr. PLC func. 10	47444	Oh1D14	0 to 65535	0 to 65535
US. 21	Output link addr. PLC func. 11	47445	Oh1D15	0 to 65535	0 to 65535
US. 22	Output link addr. PLC func. 12	47446	Oh1D16	0 to 65535	0 to 65535
US. 23	Output link addr. PLC func. 13	47447	Oh1D17	0 to 65535	0 to 65535
US. 24	Output link addr. PLC func. 14	47448	Oh1D18	0 to 65535	0 to 65535
US. 25	Output link addr. PLC func. 15	47449	Oh1D19	0 to 65535	0 to 65535
US. 26	Output link addr. PLC func. 16	47450	Oh1D1A	0 to 65535	0 to 65535
US. 27	Output link addr. PLC func. 17	47451	Oh1D1B	0 to 65535	0 to 65535
US. 28	Output link addr. PLC func. 18	47452	Oh1D1C	0 to 65535	0 to 65535
US. 31	PLC input value 1	47455	0h1D1F	-9999 to 9999	-9999 to 9999
US. 32	PLC input value 2	47456	Oh1D20	-9999 to 9999	-9999 to 9999
US. 33	PLC input value 3	47457	Oh1D21	-9999 to 9999	-9999 to 9999
US. 34	PLC input value 4	47458	Oh1D22	-9999 to 9999	-9999 to 9999
US. 35	PLC input value 5	47459	0h1D23	-9999 to 9999	-9999 to 9999
US. 36	PLC input value 6	47460	Oh1D24	-9999 to 9999	-9999 to 9999
US. 37	PLC input value 7	47461	Oh1D25	-9999 to 9999	-9999 to 9999
US. 38	PLC input value 8	47462	0h1D26	-9999 to 9999	-9999 to 9999
US. 39	PLC input value 9	47463	Oh1D27	-9999 to 9999	-9999 to 9999
US. 40	PLC input value 10	47464	Oh1D28	-9999 to 9999	-9999 to 9999
US. 41	PLC input value 11	47465	Oh1D29	-9999 to 9999	-9999 to 9999
US. 42	PLC input value 12	47466	0h1D2A	-9999 to 9999	-9999 to 9999
US. 43	PLC input value 13	47467	0h1D2B	-9999 to 9999	-9999 to 9999
US. 44	PLC input value 14	47468	Oh1D2C	-9999 to 9999	-9999 to 9999
US. 45	PLC input value 15	47469	Oh1D2D	-9999 to 9999	-9999 to 9999


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
US. 46	PLC input value 16	47470	Oh1D2E	-9999 to 9999	-9999 to 9999
US. 47	PLC input value 17	47471	0h1D2F	-9999 to 9999	-9999 to 9999
US. 48	PLC input value 18	47472	0h1D30	-9999 to 9999	-9999 to 9999
US. 49	PLC input value 19	47473	Oh1D31	-9999 to 9999	-9999 to 9999
US. 50	PLC input value 20	47475	Oh1D32	-9999 to 9999	-9999 to 9999
US.51	PLC input value 21	47475	Oh1D33	-9999 to 9999	-9999 to 9999
US. 52	PLC input value 22	47476	Oh1D34	-9999 to 9999	-9999 to 9999
US. 53	PLC input value 23	47477	Oh1D35	-9999 to 9999	-9999 to 9999
US. 54	PLC input value 24	47478	Oh1D36	-9999 to 9999	-9999 to 9999
US. 55	PLC input value 25	47479	Oh1D37	-9999 to 9999	-9999 to 9999
US. 56	PLC input value 26	47480	Oh1D38	-9999 to 9999	-9999 to 9999
US. 57	PLC input value 27	47481	Oh1D39	-9999 to 9999	-9999 to 9999
US. 58	PLC input value 28	47482	0h1D3A	-9999 to 9999	-9999 to 9999
US. 59	PLC input value 29	47483	0h1D3B	-9999 to 9999	-9999 to 9999
US. 60	PLC input value 30	47484	0h1D3C	-9999 to 9999	-9999 to 9999
US. 80	Analogue input V1 value	47504	Oh1D50	0 to 12.000\%	0 to 12000
US. 81	Analogue input 12 value	47505	Oh1D51	$\begin{gathered} -12.000 \text { to } \\ 12.000 \% \\ \hline \end{gathered}$	-12000 to 12000
US. 82	Digital inputs value	47506	0h1D52	0 to 127	0 to 127
US. 85	Analogue output value	47509	Oh1D55	0.000 to 10.000\%	0 to 10000
US. 88	Digital output value	47512	Oh1D58	0 to 3	0 to 3


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
				NOP	
				ADD	0
				SUB	1
				ADDSUB	2
				MIN	3
				MAX	
				ABS	5
				NEGATE	6
				MPYDIV	7
				REMAINDER	8
				COMPARE-GT	9
				COMPARE-GEQ	10
				COMPARE-	11
				EQUAL	12
				COMPARE-	13
UF. 1	PLC function 1	47681	Oh1E01	NEQUAL	14
				TIMER	15
				LIMIT	16
				AND	17
				OR	18
				XOR	19
				ANDOR	20
				SWITCH	21
				BITTEST	22
				BITSET	23
				BITCLEAR	24
				LOWPASSFILTER	25
				PI_CONTORL	26
				PI_PROCESS	27
				UPCOUNT	28
				DOWNCOUNT	
UF. 2	Input A for PLC function 1	47682	Oh1E02	0 to 65535	0 to 65535
UF. 3	Input B for PLC function 1	47683	Oh1E03	0 to 65535	0 to 65535
UF. 4	Input C for PLC function 1	47684	Oh1E04	0 to 65535	0 to 65535
UF. 5	Output PLC function 1	47685	Oh1E05	-32767 to 32767	-32767 to 32767
UF. 6	PLC function 2	47686	Oh1E06	See UF. 1	See UF. 1
UF. 7	Input A for PLC function 2	47687	Oh1E07	See UF. 2	See UF. 2


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
UF. 8	Input B for PLC function 2	47688	Oh1E08	See UF. 3	See UF. 3
UF. 9	Input C for PLC function 2	47689	Oh1E09	See UF. 4	See UF. 4
UF. 10	Output PLC function 2	47690	Oh1E0A	See UF. 5	See UF. 5
UF. 11	PLC function 3	47691	Oh1E0B	See UF. 1	See UF. 1
UF. 12	Input A for PLC function 3	47692	Oh1E0C	See UF. 2	See UF. 2
UF. 13	Input B for PLC function 3	47693	Oh1E0D	See UF. 3	See UF. 3
UF. 14	Input C for PLC function 3	47694	Oh1E0E	See UF. 4	See UF. 4
UF. 15	Output PLC function 3	47695	Oh1E0F	See UF. 5	See UF. 5
UF. 16	PLC function 4	47696	Oh1E10	See UF. 1	See UF. 1
UF. 17	Input A for PLC function 4	47697	Oh1E11	See UF. 2	See UF. 2
UF. 18	Input B for PLC function 4	47698	Oh1E12	See UF. 3	See UF. 3
UF. 19	Input C for PLC function 4	47699	Oh1E13	See UF. 4	See UF. 4
UF. 20	Output PLC function 4	47700	Oh1E14	See UF. 5	See UF. 5
UF. 21	PLC function 5	47701	Oh1E15	See UF. 1	See UF. 1
UF. 22	Input A for PLC function 5	47702	Oh1E16	See UF. 2	See UF. 2
UF. 23	Input B for PLC function 5	47703	Oh1E17	See UF. 3	See UF. 3
UF. 24	Input C for PLC function 5	47704	Oh1E18	See UF. 4	See UF. 4
UF. 25	Output PLC function 5	47705	Oh1E19	See UF. 5	See UF. 5
UF. 26	PLC function 6	47706	Oh1E1A	See UF. 1	See UF. 1
UF. 27	Input A for PLC function 6	47707	Oh1E1B	See UF. 2	See UF. 2
UF. 28	Input B for PLC function 6	47708	Oh1E1C	See UF. 3	See UF. 3
UF. 29	Input C for PLC function 6	47709	Oh1E1D	See UF. 4	See UF. 4
UF. 30	Output PLC function 6	47710	Oh1E1E	See UF. 5	See UF. 5
UF. 31	PLC function 7	47711	0h1E1F	See UF. 1	See UF. 1


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
UF. 32	Input A for PLC function 7	47712	Oh1E20	See UF. 2	See UF. 2
UF. 33	Input B for PLC function 7	47713	Oh1E21	See UF. 3	See UF. 3
UF. 34	Input C for PLC function 7	47714	Oh1E22	See UF. 4	See UF. 4
UF. 35	Output PLC function 7	47715	0h1E23	See UF. 5	See UF. 5
UF. 36	PLC function 8	47716	Oh1E24	See UF. 1	See UF. 1
UF. 37	Input A for PLC function 8	47717	Oh1E25	See UF. 2	See UF. 2
UF. 38	Input B for PLC function 8	47718	Oh1E26	See UF. 3	See UF. 3
UF. 39	Input C for PLC function 8	47719	Oh1E27	See UF. 4	See UF. 4
UF. 40	Output PLC function 8	47720	Oh1E28	See UF. 5	See UF. 5
UF. 41	PLC function 9	47721	Oh1E29	See UF. 1	See UF. 1
UF. 42	Input A for PLC function 9	47722	Oh1E2A	See UF. 2	See UF. 2
UF. 43	Input B for PLC function 9	47723	Oh1E2B	See UF. 3	See UF. 3
UF. 44	Input C for PLC function 9	47724	Oh1E2C	See UF. 4	See UF. 4
UF. 45	Output PLC function 9	47725	Oh1E2D	See UF. 5	See UF. 5
UF. 46	PLC function 10	47726	0h1E2E	See UF. 1	See UF. 1
UF. 47	Input A PLC function $10$	47727	Oh1E2F	See UF. 2	See UF. 2
UF. 48	Input B PLC function $10$	47728	Oh1E30	See UF. 3	See UF. 3
UF. 49	Input C PLC function 10	47729	Oh1E31	See UF. 4	See UF. 4
UF. 50	Output PLC function $10$	47730	Oh1E32	See UF. 5	See UF. 5
UF. 51	PLC function 11	47731	Oh1E33	See UF. 1	See UF. 1
UF. 52	Input A PLC function 11	47732	Oh1E34	See UF. 2	See UF. 2
UF. 53	Input B PLC function 11	47733	Oh1E35	See UF. 3	See UF. 3
UF. 54	Input C PLC function 11	47734	Oh1E36	See UF. 4	See UF. 4


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
UF. 55	Output PLC function 11	47735	Oh1E37	See UF. 5	See UF. 5
UF. 56	PLC function 12	47736	Oh1E38	See UF. 1	See UF. 1
UF. 57	Input A PLC function 12	47737	Oh1E39	See UF. 2	See UF. 2
UF. 58	Input B PLC function 12	47738	Oh1E3A	See UF. 3	See UF. 3
UF. 59	Input C PLC function $12$	47739	Oh1E3B	See UF. 4	See UF. 4
UF. 60	Output PLC function 12	47740	Oh1E3C	See UF. 5	See UF. 5
UF. 61	PLC function 13	47741	Oh1E3D	See UF. 1	See UF. 1
UF. 62	Input A PLC function 13	47742	Oh1E3E	See UF. 2	See UF. 2
UF. 63	Input B PLC function 13	47743	Oh1E3F	See UF. 3	See UF. 3
UF. 64	Input C PLC function 13	47744	Oh1E40	See UF. 4	See UF. 4
UF. 65	Output PLC function 13	47745	Oh1E41	See UF. 5	See UF. 5
UF. 66	PLC function 14	47746	Oh1E42	See UF. 1	See UF. 1
UF. 67	Input A PLC function 14	47747	Oh1E43	See UF. 2	See UF. 2
UF. 68	Input B PLC function 14	47748	Oh1E44	See UF. 3	See UF. 3
UF. 69	Input C PLC function 14	47749	Oh1E45	See UF. 4	See UF. 4
UF. 70	Output PLC function 14	47750	Oh1E46	See UF. 5	See UF. 5
UF. 71	PLC function 15	47751	Oh1E47	See UF. 1	See UF. 1
UF. 72	Input A PLC function 15	47752	Oh1E48	See UF. 2	See UF. 2
UF. 73	Input B PLC function 15	47753	Oh1E49	See UF. 3	See UF. 3
UF. 74	Input C PLC function 15	47754	Oh1E4A	See UF. 4	See UF. 4
UF. 75	Output PLC function 15	47755	Oh1E4B	See UF. 5	See UF. 5
UF. 76	PLC function 16	47756	Oh1E4C	See UF. 1	See UF. 1


Screen	Description	Modbus Decimal	Address Hexadecimal	Range	Modbus Range
UF. 77	Input A PLC function 16	47757	Oh1E4D	See UF. 2	See UF. 2
UF. 78	Input B PLC function 16	47758	Oh1E4E	See UF. 3	See UF. 3
UF. 79	Input C PLC function $16$	47759	Oh1E4F	See UF. 4	See UF. 4
UF. 80	Output PLC function 16	47760	Oh1E50	See UF. 5	See UF. 5
UF. 81	PLC function 17	47761	Oh1E51	See UF. 1	See UF. 1
UF. 82	Input A PLC function $17$	47762	Oh1E52	See UF. 2	See UF. 2
UF. 83	Input B PLC function $17$	47763	Oh1E53	See UF. 3	See UF. 3
UF. 84	Input C PLC function 17	47764	Oh1E54	See UF. 4	See UF. 4
UF. 85	Output PLC function 17	47765	Oh1E55	See UF. 5	See UF. 5
UF. 86	PLC function 18	47766	Oh1E56	See UF. 1	See UF. 1
UF. 87	Input A PLC function 18	47767	Oh1E57	See UF. 2	See UF. 2
UF. 88	Input B PLC function 18	47768	Oh1E58	See UF. 3	See UF. 3
UF. 89	Input C PLC function $18$	47769	Oh1E59	See UF. 4	See UF. 4
UF. 90	Output PLC function 18	47770	Oh1E5A	See UF. 5	See UF. 5

## ACCESSORIES

## 16

CODE*	TYPE	DESCRIPTION
See   Introduction,   Modbus   Coumminication   section	Communications	SD300 family is compatible with the most commonly   used communication protocols (Profibus-DP,   Modbus TCP, Ethernet IP, CANOpen...), thanks to   its optional boards.   Please refer to Introduction, Modbus   Coumminication section when purchasing additional   communication boards.
SD3IO	Extension I/O	Expansion module I/O: 3 Digital Inputs, 2 Digital   Outputs, 2 Analog Inputs and 1 Analog Output.   Please refer to Supported Modbus Function Codes,   Modbus Coumminication section for further   information.
SD3EBFD	Conduit Kit	UL open type and enclosed type 1 certification:   $\bullet \quad$ UL open type is offered by default.   UL enclosed type1 needs conduit kit   (option) installation.
Ask for the Conduit Module that corresponds to your		
drive frame for NEMA1 compliance. Please refer to		
Adressing Modes, Modbus Coumminication section		
for further information.		


CODE*	TYPE	DESCRIPTION
SD3DSP	Optional display	Removable LCD display unit for remote installation.   It integrates three LEDs that show the drive status,   a LCD screen with 4 lines of 16 characters and a   control keyboard for parameters setting and   commissioning. For further information, contact   Power Electronics.

(*) Consult availability with Power Electronics.

## Communications

SD300 family is compatible with the most commonly used communication protocols (Profibus-DP, Modbus TCP, Ethernet IP, CANOpen...), thanks to its optional boards.

Please refer to the table below when purchasing additional communication boards:

Code	Frame
SD3CO	CANOpen communication module
SD3PB	Profibus-DP communication module.
SD3ETH	Ethernet I/P - Modbus TCP communication module.
SD3ETC	EtherCAT communication module.
SD3PN	Profinet communication module.

## Extension I/O

The input and output expansion optional board offers the possibility to increase the number of analogue and digital inputs and outputs for the inverters of the SD300 series.

This board includes:

- 3 Digital Inputs and 2 Digital Outputs.
- 2 Analogue Inputs and 1 Analogue Output.

For further details and installation instructions, please refer to the I/O Expansion Board Manual.

## Conduit Kit

UL open type is offered by default. To meet UL enclosed type1, this kit must be installed.


Optional conduit kit
Ask for the conduit module that corresponds to your drive frame for NEMA1 compliance:

Code	Frame
SD3EBF1	1N \& 2N
SD3EBF2	3 N \& 4 N
SD3EBF3	5 N
SD3EBIP6F1	1 F
SD3EBIP6F2	2 F
SD3EBIP6F3	3 F
SD3EBF4	4
SD3EBF5	5
SD3EBF6	6

## Flange Type

The flange type can be mounted outside of the panel in case the space is limited. Its main purpose is to favor the dissipation of the generated heat during operations, working as a heat sink.


Optional flange type

Ask for the flange that corresponds to your drive frame:

Code	Frame
SD3FLGF1	1N \& 2N
SD3FLGF2	3 N \& 4N
SD3FLGF3	5 N
SD3FLGIP6F1	1 F
SD3FLGIP6F2	2 F
SD3FLGIP6F3	3 F
SD3FLGF4	4
SD3FLGF5	5
SD3FLGF6	6

## Mechanical Installation

Frames 1N, 2N, 3N, 1F, 2F \& 3F:
In order to install the Flange Option:

- Fasten both sides of the flange to the base of the drive using the included M3 bolts with a tightening torque between 2.1 and 6.1 (kgf*cm).
- Use the remaining bolts to fix the flange as shown below.


Frames $N$ and F flange option kit mounting.

Frames 4, 5 \& 6:
In order to install the Flange Option:

- Fasten both sides of the flange to the base of the drive using the included M4 bolts with a tightening torque between 0.2 and $0.6(\mathrm{Nm})$ and M 5 bolts with a tightening torque between 0.4 and $1(\mathrm{Nm})$.
- Use the remaining bolts to fix the flange as shown below.


Frames 4, 5 and 6 flange option kit mounting

## Dimensions

Frame 1N:


Frame 1 N flange option kit dimensions

Model	W	H	D1	D2	A1	A2	A3	B1	B2	B3	$\varnothing$	Weight *
	$\mathbf{m m}$	$\mathbf{k g}$										
	(in)	(lb)										
SD300322	110	168	123	31.8	98	72	14	159.8	145.4	77.9	3.5	1.1
SD300242	$(4.33)$	$(6.61)$	$(4.84)$	$(1.25)$	$(3.86)$	$(2.83)$	$(0.55)$	$(6.29)$	$(5.72)$	$(3.07)$	$(0.14)$	$(2.43)$

*Total weight of the drive with the flange installed

Frame 2N:


Frame 2N flange option kit dimensions

Model	W	H	D1	D2	A1	A2	A3	B1	B2	B3	$\emptyset$	Weight*
	$\mathrm{mm}$ (in)	$\begin{aligned} & \text { mi } \\ & \text { (ir } \end{aligned}$	$\begin{gathered} \mathrm{m} \\ \text { (ir } \end{gathered}$	(in)	$\begin{aligned} & \mathrm{mm} \\ & \text { (in) } \end{aligned}$	(in)	$\begin{aligned} & \mathrm{mm} \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \mathrm{mm} \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \mathrm{mm} \\ & \text { (in) } \end{aligned}$	$\begin{gathered} \mathrm{mm} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { mm } \\ \text { (in) } \end{gathered}$	$\begin{aligned} & \mathrm{kg} \\ & \text { (lb) } \end{aligned}$
$\begin{aligned} & \text { SD300312 } \\ & \text { SD300622 } \\ & \text { SD300342 } \\ & \hline \end{aligned}$	$\begin{gathered} 110 \\ (4.33) \end{gathered}$	$\begin{gathered} 168 \\ (6.61) \end{gathered}$	$\begin{gathered} 128 \\ (5.04) \end{gathered}$	$\begin{gathered} 36.8 \\ (1.45) \end{gathered}$	$\begin{gathered} 98 \\ (3.86) \end{gathered}$	$\begin{gathered} 72 \\ (2.83) \end{gathered}$	$\begin{gathered} 14 \\ (0.55) \end{gathered}$	$\begin{aligned} & 159.8 \\ & (6.29) \end{aligned}$	$\begin{aligned} & 145.4 \\ & (5.72) \end{aligned}$	$\begin{gathered} 77.9 \\ (3.07) \end{gathered}$	$\begin{gathered} 3.5 \\ (0.14) \end{gathered}$	$\begin{gathered} 1.1 \\ (2.43) \end{gathered}$

*Total weight of the drive with the flange installed

Frames $3 \mathrm{~N} \& 4 \mathrm{~N}$ :


SD30DTD0003AI
Frames $3 N$ \& $4 N$ flange option kit dimensions

Model	W	H	D1	D2	A1	A2	A3	B1	B2	B3	0	Weight ${ }^{*}$
	(in)	(in)	(in)		$\underset{\text { (in) }}{\substack{\text { mm }}}$	$\begin{aligned} & \mathrm{mm} \\ & \text { (in) } \end{aligned}$			(in)		n)	$\begin{gathered} \mathrm{kg} \\ \text { (lb) } \end{gathered}$
$\begin{array}{\|l\|} \text { SD300922 } \\ \text { SD300542 } \\ \hline \end{array}$	$(5.51)$	$\left\|\begin{array}{c} 168 \\ (6.61) \end{array}\right\|$	(5.12)		(5.51)	(4.02)	$(0.55)$			(3.07)		$\begin{aligned} & 1.6 \\ & 3.53) \end{aligned}$
SD300912 SD301222 SD300742	(5.51)	$\left\|\begin{array}{c} 168 \\ (6.61) \end{array}\right\|$	(5.71)	$\left\|\begin{array}{c} 03.2 \\ (2.09) \end{array}\right\|$	$\begin{gathered} 140 \\ (5.51) \end{gathered}$	$\begin{gathered} 102 \\ (4.02) \end{gathered}$	$(0.55)$	$\begin{aligned} & 159.8 \\ & (6.29) \end{aligned}$	(5.69)	(3.07)	$(0.18)$	$\begin{gathered} 1.8 \\ (3.97) \end{gathered}$

*Total weight of the drive with the flange installed

Frame 5N:


SD30DTD0004AI
Frame 5N flange option kit dimensions.

Model	W	H	D1	D2	A1	A2	A3	B1	B2	B3	$\emptyset$	Weight ${ }^{\text {* }}$
	mm   (in)	mm   (in)	mm   (in)	mm   (in)	$\mathrm{mm}$ (in)	mm   (in)	$\mathrm{kg}$ (lb)					
SD301212 SD301822 SD301042	$\begin{aligned} & 179.8 \\ & (7.08) \end{aligned}$	$\begin{array}{\|c} 168 \\ (6.61) \end{array}$	$\left.\begin{array}{\|c\|} 145 \\ (5.71) \end{array} \right\rvert\,$	$\begin{gathered} 54 \\ (2.13) \end{gathered}$	$\begin{aligned} & 165.8 \\ & (6.53) \end{aligned}$	$\begin{array}{\|c\|} \hline 144 \\ (5.67) \end{array}$	$\begin{gathered} 14 \\ (0.55) \end{gathered}$	$\begin{aligned} & 161.4 \\ & (6.35) \end{aligned}$	$\begin{aligned} & 146.4 \\ & (5.76) \end{aligned}$	$\begin{gathered} 78.9 \\ (3.11) \end{gathered}$	$\begin{gathered} 4.5 \\ (0.18) \end{gathered}$	$\begin{gathered} 2.3 \\ (5.07) \end{gathered}$

*Total weight of the drive with the flange installed

Frame 1F:


SD30DTD0005AI
Frame 1F flange option kit dimensions.

Model	W	H	D1	D2	A1	A2	B1	B2	B3	$\emptyset$	Weight*
	mm   (in)	$\mathrm{mm}$ (in)	mm   (in)	$\begin{gathered} \mathrm{kg} \\ \text { (lb) } \end{gathered}$							
$\begin{aligned} & \text { SD300242F } \\ & \text { SD300312F } \\ & \text { SD300342F } \end{aligned}$	$\begin{gathered} 106 \\ (4.17) \end{gathered}$	$\begin{gathered} 220 \\ (8.66) \end{gathered}$	$\begin{array}{\|c\|c} 130 \\ (5.12) \end{array}$	$\begin{gathered} 38.8 \\ (1.53) \end{gathered}$	$\begin{gathered} 92 \\ (3.62) \end{gathered}$	$\begin{gathered} 72.5 \\ (2.85) \end{gathered}$	$\begin{aligned} & 211.4 \\ & (8.32) \end{aligned}$	$\begin{aligned} & 197.8 \\ & (7,79) \end{aligned}$	$\begin{array}{\|c} 97.1 \\ (3.82) \end{array}$	$\begin{gathered} 3.5 \\ (0.14) \end{gathered}$	1.5 (3.3)

[^1]
## Frame 2F:



Frame 2F flange option kit dimensions.

Model	W	H	D1	D2	A1	A2	B1	B2	B3	$\varnothing$	Weight*
	mm   (in)	mm (in)	mm   (in)	$\mathrm{mm}$ (in)	mm (in)	mm   (in)	$\begin{gathered} \mathrm{kg} \\ \text { (lb) } \end{gathered}$				
SD300612F											
SD300912F	140	220	140	52.6	126	103.1	209.6	196.2	84.9	4.5	2.2
SD300542F	(5.51)	(8.66)	(5.51)	(2.07)	(4.96)	(4.06)	(8.25)	(7.72)	(3.34)	(0.18)	(4.85)
SD300742F											

*Total weight of the drive with the flange installed

Frame 3F:


Frame 3F flange option kit dimensions.

Model	W	H	D1	D2	A1	A2	B1	B2	B3	$\varnothing$	Weight
	$\mathbf{m m}$   (in)	$\mathbf{k g}$   (lb)									
SD301042F	180	220	140	52.2	166	143.3	210.1	196.7	85.1	4.5	2.3
SD301212F	$(7.09)$	$(8.66)$	$(5.51)$	$(2.06)$	$(6.54)$	$(5.64)$	$(8.27)$	$(7.74)$	$(3.35)$	$(0.18)$	$(5.07)$

*Total weight of the drive with the flange installed

Frames 4, 5 \& 6:


Frames 4, 5 \& 6 flange option kit dimensions

Model	W	H	D1	D2	A1	A2	B1	B2	B3	$\emptyset$	Weight*
	mm   (in)	mm (in)	mm   (in)	mm   (in)	kg   (lb)						
$\begin{aligned} & \text { SD303022, } \\ & \text { SD304022 } \end{aligned}$	206	264.5	140	55.1	186	178	251.5	235	8.4	5	3.7
$\begin{aligned} & \text { SD301642F, } \\ & \text { SD302342F } \end{aligned}$	(8.11)	(10.41)	(5.51)	(2.17)	(7.32)	(7.01)	(9.90)	(9.25)	(0.33)	(0.20)	(8.16)


Model	W	H	D1	D2	A1	A2	B1	B2	B3	$\varnothing$	Weight*
	${ }_{\text {(in) }}$	mm   (in)	$\underset{(\mathrm{in})}{\mathrm{mm}}$	(in)	$\begin{aligned} & \text { (in) } \\ & \hline \end{aligned}$	$\underset{\text { (in) }}{\mathrm{mm}}$	$\underset{(\mathrm{in})}{\mathrm{mm}}$	mm   (in)	$\begin{gathered} \mathrm{mm} \\ \text { (in) } \end{gathered}$	$\begin{gathered} \text { (in) } \end{gathered}$	$\begin{aligned} & \mathrm{kg} \\ & \text { (Ib) } \end{aligned}$
SD305622, SD303042F SD303842F	$\begin{aligned} & 225.2 \\ & (8.87) \end{aligned}$	$\begin{gathered} 322.7 \\ (12.71) \end{gathered}$	$(6.42)$	$\begin{gathered} 72.1 \\ (2.84) \end{gathered}$	$\begin{aligned} & 205.2 \\ & (8.09 \end{aligned}$	$\begin{aligned} & 197.5 \\ & (7.78) \end{aligned}$	$\begin{gathered} 309.7 \\ (12.19) \end{gathered}$	$\left\|\begin{array}{c} 292.5 \\ (11.52) \end{array}\right\|$	$(0.37)$	$\left\|\begin{array}{c} 5 \\ (0.20) \end{array}\right\|$	$\begin{gathered} 5.15 \\ (11.35) \end{gathered}$
SD306922, SD304442F SD305842F	$\left\|\begin{array}{c} 267 \\ (10.51) \end{array}\right\|$	$\begin{aligned} & 384.5 \\ & (15.14) \end{aligned}$	$(7.36)$	$\begin{gathered} 93.6 \\ (3.69) \end{gathered}$	$\begin{gathered} 247 \\ (9.72) \end{gathered}$	$\left\|\begin{array}{c} 239 \\ (9.41) \end{array}\right\|$	$\left\|\begin{array}{c} 371.5 \\ (14.63) \end{array}\right\|$	$\left\|\begin{array}{c} 352 \\ (13.86) \end{array}\right\|$	$(0.37)$	$\left\lvert\, \begin{gathered} 6 \\ (0.24) \end{gathered}\right.$	$\begin{gathered} 5.4 \\ (11.91) \end{gathered}$

*Total weight of the drive with the flange installed

## Drive + Flange Mounting

The SD300 variable speed drives are designed to be mounted on a wall or inside a panel.

The inverter can become very hot during operation. Install the inverter on a surface that is fire-resistant or flame-retardant and with sufficient clearance around the inverter to allow air to circulate.

Make sure to follow the mounting and clearance recommendations in sections Drive Mounting and Clearances respectively.

The number of required screws for fixing the drive + flange varies depending the frame and is shown in the table below. Please refer to section 4 to verify the frame and exact measures of your SD300 drive.

Frame	Fixing screws   (number * metric)
$1 \mathrm{~N}, 2 \mathrm{~N}, 1 \mathrm{~F}$	$2^{\star} \mathrm{M} 3$
$3 \mathrm{~N}, 4 \mathrm{~N}, 5 \mathrm{~N}, 2 \mathrm{~F}, 3 \mathrm{~F}$	$2^{\star} \mathrm{M} 4$
4,5	$4^{*} \mathrm{M} 4$
6	$4^{\star} \mathrm{M} 5$

Example: Frame 1 N drive + flange mounting: Use two M3 screws to fix the drive to the wall/cabinet.


Drive + flange mounting. Frame 1 N .

Example: Frame 5 drive + flange mounting: Use four M4 screws to fix the drive to the wall/cabinet.


Drive + flange mounting. Frame 5

## COMMONLY USED CONFIGURATIONS

## NOTICE

The following instructions are based on the assumption that all parameters are set to the factory default values. Results may be different if parameter values have been modified. In this case, set all parameters back to their default value and follow the instructions.

## Start/Stop command and speed setting from keyboard

## Parameter configuration

Parameter	Default   value	Description	Set value
$\mathbf{0 . 0 0}$	0.00 Hz	Frequency reference	x.xxHz (Set the frequency reference).
ACC	20.0 seg	Acceleration time	10.0 sec
dEC	30.0 seg	Deceleration time	10.0 sec
drv	1	Start/Stop control	0: Start/Stop from keyboard.
frq	0	Frequency setting   mode	0: Reference will be introduced from keyboard.
Ad.8	0	Stop mode	0: Stop with deceleration ramp.   1: DC brake to stop.   2: Free run to stop.   4: Regenerative brake to stop.
Ad.10	0	Start after low voltage.	0: NO (Drive does not start after power loss).   1: YES (Drive starts after power loss).   0: NO (Limits are set by maximum frequency and   start frequency).   1: YES (Limits are set by the higher and lower   frequency limits).
Ad.24	0	Use frequency limit	
Ad.25	0.50 Hz	Frequency lower limit	0.00Hz



## Start/Stop command by keyboard and speed setting by analogue input

## Parameter configuration

Parameter	Default value	Description	Set value
0.00	0.00 Hz	Frequency reference	x.xxHz (Reference visualization).
ACC	20.0 seg	Acceleration time	10.0 sec
dEC	30.0 seg	Deceleration time	10.0 sec
drv	1	Start/Stop control	0: Start/Stop from keyboard.
frq	0	Frequency setting mode	2: Reference will be introduced through analogue V1.   5: Reference will be introduced through analogue 12.
Ad. 8	0	Stop mode	0: Stop with deceleration ramp.   1: DC brake to stop.   2: Free run to stop.   4: Regenerative brake to stop.
Ad. 10	0	Start after low voltage.	0: NO (Drive does not start after power loss).   1: YES (Drive starts after power loss).
Ad. 24	0	Use frequency limit	0 : NO (Limits are set by maximum frequency and start frequency).   1: YES (Limits are set by the higher and lower frequency limits).
Ad. 25	0.50Hz	Frequency lower limit	0.00 Hz
Ad. 26	50.00 Hz	Frequency higher limit	50.00 Hz
bA. 13	*	Motor Current	? A (See motor plate).
dr. 14	*	Motor rated power	0.2 0.2 kW   $\ldots$ $\ldots$   5.5 5.5 kW   7.5 7.5 kW
dr. 15	0	Torque boost	0: Manual torque (Both directions can be configured separately, in dr. $16 \rightarrow$ 'Start torque in forward direction' and in dr. $17 \rightarrow$ 'Start torque in reverse direction').


Parameter	Default value	Description	Set value
			1 and 2: The drive automatically calculates the voltage to apply at the start using the motor parameters.
dr. 18	60.00 Hz	Motor frequency	50.00 Hz
dr. 19	0.50 Hz	Start frequency	0.10 Hz
dr. 20	60.00 Hz	Max speed limit	50.00 Hz
dr. 93	0	Parameter initialization	1: Set parameters back to their factory value (only if required).
dr. 97	2.x	Software version	-
Cn. 4	3 kHz	Modulation frequency	5 kHz
In. 1	50.00 Hz	Analog input max. freq	50.00 Hz
In. 7	10	V1 filter	10ms (Low Pass Filter for V1).
In. 8	OV	V1 minimum voltage	0.00 V (V1 minimum voltage adjustment).
In. 9	0.00	V1 minimum reference	0.00 (\% of the value set in $\ln .1$ )
In. 10	10 V	V1 maximum voltage	10.0V (V1 maximum voltage adjustment).
In. 11	100.00	V1 maximum reference	100.00 (\% of the value set in $\ln .1$ )
In. 52	10 ms	12 filter	10 ms (Analogue input current filter).
In. 53	4.00 mA	12 minimum current	4.00 mA ( 12 minimum current adjustment).
In. 54	0.00	12 minimum reference	0.00 (\% of the value set $\ln .1$ )
In. 55	20.00 mA	12 maximum current	20.00 mA ( 12 maximum current adjustment)
In. 56	100.00	I2 maximum reference	100.00 (\% of the value set $\ln .1$ )

## Connection scheme

Terminals I2/CM
Terminals VR/V1/CM: Analogue input $0-10 \mathrm{~V}$.

Analogue input $4-20 m A$.


Start/Stop command by keyboard and speed setting by analogue input

## Start/Stop command by terminals and speed setting by analogue input

Parameter configuration


Parameter	Default   value	Description	Set value
			1 and 2: The drive automatically calculates the   voltage to apply at the start using the motor   parameters.
dr.18	60.00 Hz	Motor frequency	50.00 Hz
dr.19	0.50 Hz	Start frequency	0.10 Hz
dr.20	60.00 Hz	Max speed limit	50.00 Hz
dr.93	0	Parameter initialization	$1:$ Set parameters back to their factory value (only   if required).
dr.97	$2 . \mathrm{x}$	Software version	-
Cn.4	3 kHz	Modulation frequency	5 kHz
In.1	50.00 Hz	Analog input max. freq	50.00 Hz
In.7	10	V1 filter	$10 \mathrm{~ms} \mathrm{(Low} \mathrm{Pass} \mathrm{Filter} \mathrm{for} \mathrm{V1)}$.
In.8	0 V	V1 minimum voltage	0.00 V (V1 minimum voltage adjustment).
In.9	0.00	V1 minimum reference	0.00 (\% of the value set in In.1)
In.10	10 V	V1 maximum voltage	10.0 V (V1 maximum voltage adjustment).
In.11	100.00	V1 maximum reference	100.00 (\% of the value set in In.1)
In.52	10 ms	I2 filter	$10 \mathrm{~ms} \mathrm{(Analogue} \mathrm{input} \mathrm{current} \mathrm{filter)}$.
In.53	4.00 mA	I2 minimum current	4.00 mA (I2 minimum current adjustment).
In.54	0.00	I2 minimum reference	0.00 (\% of the value set In.1)
In.55	20.00 mA	I2 maximum current	20.00 mA (I2 maximum current adjustment)
In.56	100.00	I2 maximum reference	100.00 (\% of the value set In.1)
In.65	1	Digital input 1	$1:$ Forward start command

## Connection scheme

Terminals CM/P1: Start commando (NO state).
Terminals I2/CM: Analogue input $4-20 \mathrm{~mA}$.
Terminals VR/V1/CM: Analogue input 0 - 10V.


Start/Stop command by terminals and speed setting by analogue input

## Multi-speed commands (multi-step frequencies) using P5, P6 and P7

## Parameter configuration



Parameter	Default   value	Description	Set value
			forward direction' and in dr.17 $\boldsymbol{\rightarrow}$ 'Start torque in   reverse direction').   1 and 2: The drive automatically calculates the   voltage to apply at the start using the motor   parameters.
dr.18	60.00 Hz	Motor frequency	50.00 Hz
dr.19	0.50 Hz	Start frequency	0.10 Hz
dr.20	60.00 Hz	Max speed limit	50.00 Hz
dr.93	0	Parameter initialization	1: Set parameters back to their factory value (only   if required)
dr.97	$2 . x$	Software version	-
Cn.4	3 kHz	Modulation frequency	5kHz
In.65	1	Digital input 1	1: Forward start command
In.69	7	Digital input 5	7: Low Speed (Low bit).
In.70	8	Digital input 6	8: Medium Speed (Medium bit).
In.71	9	Digital input 7	9: High Speed (High bit).
bA.53	40.00 Hz	Multi-Reference4	45.00Hz (multiple speed 4).
bA.54	50.00 Hz	Multi-Reference5	50.00 Hz (multiple speed 5).
bA.55	60.00 Hz	Multi-Reference6	47.00Hz (multiple speed 6).
bA.56	60.00 Hz	Multi-Reference7	42.00Hz (multiple speed 7).

Depending on the state of inputs P5, P6 y P7, the different configured frequencies can be selected:

Programmed   frequency	Parameter	High speed   (P7)	Medium   speed (P6)	Low speed   (P5)
50.00 Hz	0.00	0	0	0
30.00 Hz	St 1	0	0	1
35.00 Hz	St 2	0	1	0
40.00 Hz	St 3	0	1	1
45.00 Hz	bA. 53	1	0	0
50.00 Hz	bA. 54	1	0	1
47.00 Hz	bA. 55	1	1	0


Programmed   frequency	Parameter	High speed   (P7)	Medium   speed (P6)	Low speed   $(\mathbf{P 5})$
42.00 Hz	bA. 56	1	1	1

## Connection scheme

Terminals CM/P1
Start command (NO state).
Terminals CM/P5: Low speed (Low bit) (NO state).
Terminals CM/P6: Medium speed (Medium bit) (NO state).
Terminals CM/P7: High speed (High bit) (NO state).


Multi-speed commands (multi-step frequencies) using P5, P6 and P7

## Constant pressure control and automatic stop at zero level flow.

Pressure command is set by keypad.

## Parameter configuration



Parameter	Default value	Description	Set value
dr. 93	0	Parameter initialization	1: Set parameters back to their factory value (only if required).
dr. 97	2.x	Software version	-
Cn. 4	3 kHz	Modulation frequency	5 kHz
AP. 1	0	Application function selection	2: PID control enabled.
AP. 19	50.0	PID local	40.0 (adjust desired PID in \%)
AP. 20	0	Select PID regulator source	0 : PID set point introduced from keypad
AP. 21	0	Select feedback signal source	3: 12 input (Feedback from a signal of $0-20 \mathrm{~mA}$ ).
AP. 22	50.0	PID controller proportional gain	50.0
AP. 23	10.0	PID controller integration time	10.0
AP. 24	0.0	PID controller differential time	0.0
AP. 28	0	PID mode	0 : Process   1: Normal.
AP. 29	60.00	Upper limit PID output	50.00 Hz
AP. 30	-60.00	Lower limit PID output	00.00 Hz
AP. 37	60 seg	Sleep mode activation delay	40 seg (Delay time before the drive stops).
AP. 38	0.00Hz	Sleep mode activation speed	10.00 Hz (Frequency to stop operating and enter in sleep mode).
AP. 39	35\%	Awakening level	10\% (\% of the feedback to start again).
In. 1	50.00 Hz	Analog input max. freq	50.00 Hz
In. 52	10 ms	12 filter	10 ms (Analogue input current filter).
In. 53	4.00 mA	12 minimum current	4.00 mA ( 12 minimum current adjustment).
In. 54	0.00	12 minimum reference	0.00 (\% of the value set In.1)
In. 55	20.00 mA	12 maximum current	20.00 mA (12 maximum current adjustment)
In. 56	100.00	12 maximum reference	100.00 (\% of the value set In.1)
In. 65	1	Digital input 1	1: Forward start command

## Connection scheme

Terminals CM/P1: Start command (NO state).


Constant pressure control and automatic stop at zero level flow. Pressure command is set by keypad

Note: For two-wire pressure transducers, connect 1 to pin 24 and 2 to pin 12

## Speed control (up/down potentiometer) and Start/Stop commands by terminals

## Parameter configuration

Parameter	Default value	Description	Set value	
0.00	0.00 Hz	Frequency reference	x.xxHz (Reference visualization).	
ACC	20.0 seg	Acceleration time	10.0 sec	
dEC	30.0 seg	Deceleration time	10.0 sec	
drv	1	Start/Stop control	1: Start/Stop from terminals FX - Forward o Rx Reverse.	
Frq	0	Frequency setting mode	0: Local	
Ad. 8	0	Stop mode	0: Stop with deceleration ramp.   1: DC brake to stop.   2: Free run to stop.   4: Regenerative brake to stop.	
Ad. 10	0	Start after low voltage.	0: NO (Drive does not start after power loss).   1: YES (Drive starts after power loss).	
Ad. 24	0	Use frequency limit	0 : NO (Limits are set by maximum frequency and start frequency).   1: YES (Limits are set by the higher and lower frequency limits).	
Ad. 25	0.50Hz	Frequency lower limit	0.00 Hz	
Ad. 26	50.00 Hz	Frequency higher limit	50.00 Hz	
bA. 13	*	Motor Current	? A (See motor plate).	
dr. 14	*	Motor rated power	0.2 0.2 kW   $\ldots$ $\ldots$   5.5 5.5 kW   7.5 7.5 kW	
dr. 15	0	Torque boost	0: Manual torque (Both directions can be configured separately, in dr. $16 \rightarrow$ 'Start torque in forward direction' and in dr. $17 \rightarrow$ 'Start torque in reverse direction').   1 and 2 : The drive automatically calculates the voltage to apply at the start using the motor parameters.	


Parameter	Default   value	Description	Set value
dr.18	60.00 Hz	Motor frequency	50.00 Hz
dr.19	0.50 Hz	Start frequency	0.10 Hz
dr.20	60.00 Hz	Max speed limit	50.00 Hz
dr. 93	0	Parameter initialization	1: Set parameters back to their factory value (only   if required).
dr. 97	$2 . \mathrm{x}$	Software version	-
Cn.4	3 kHz	Modulation frequency	5 kHz
In.65	1	Digital input 1	1: Forward start command
In.70	8	Digital input 6	17: UP
In.71	9	Digital input 7	18: DOWN

When the forward start command is sent (common CM), the drive will start and maintain speed at 0 Hz . When P6 pushbutton is pressed, the speed will increase up to the minimum speed Ad.25, or to the speed stored in memory if Ad.65=Y

## Connection scheme

Terminals CM/P1: Run command (NO state).
Terminals CM/P6: Up push button (NO state).
Terminals CM/P7: Down push button (NO state).


Error signa output

Configured inputs inputs
$1-4$


Configured inputs. 5-7

0
0
0
0
0
E
0
0
0

SD30DTC0011AI

Speed control (up/down potentiometer) and Start/Stop commands by terminals

## CONFIGURATION REGISTER

VARIABLE SPEED DRIVE:
SERIAL №:
APPLICATION:
DATE:
CUSTOMER:
NOTES:

SD300.
MODEL:

PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
dr. 10   Torque control	N		
dr. 11   Inch Frequency	10.00 Hz		
dr. 12   INCH accel. time	20.0s		
dr. 13   INCH decel. time	30.0s		
dr. 14   Motor power	_._kW		
dr. 15   Torque boost	Manual		
dr. 16   Start torque FW. direction dr. 17	2.0\%		
Start torque in reverse direction	2.0\%		
dr. 18   Motor frequency	60.00 Hz		
dr. 19   Start frequency	0.5 Hz		
dr. 20   Max speed limit	60.00 Hz		
dr. 21   $\mathrm{Hz} /$ Rpm Display	Hz		
dr. 80   Select range	Run Freq.		
dr. 81   Select monitor code	Volt V		
dr. 89   Display changed parameters	All		
dr. 90 ESC key function	Mov. In. Pos.		
dr. 91 Eloader function	None		
dr. 93   Parameter initialization	No		
dr. 94   Register password	0		
dr. 95   Lock password	0		

PARAMETER
dr. 97
Software version
dr. 98
IO Software version
dr. 99
Hardware version
bA. 1
Alt Speed Ref
bA. 2
Aux calculation type
bA. 3
Auxiliary reference gain
bA. 4
Control mode 2
bA. 5
Speed reference source 2
bA. 6
Alternative torque reference

## bA. 7

V/F Pattern
bA. 8
Acceleration ramp type
bA. 9
Time scale
bA. 10
Input Frequency

## bA. 11

Pole Number
bA. 12
Rated Slip
bA. 13
Motor Current

## bA. 14

No load Current
bA. 15
Motor Voltage
bA. 16
Efficiency

## DEFAULT

 VALUE0

0

0

## bA: Basic Functions

## None

$M+\left(G^{*} A\right)$
100.0\%

REMOTE

LOCAL

LOCAL

Linear

MaxFreq
0.1 s

60 Hz

4

40rpm
3.6A
1.6A

OV
$72 \%$

SETTING 1
SETTING 2
$\qquad$
$\qquad$
$\qquad$


PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
bA. 17   Inertia Rate	0		
bA. 18   Output power adjustment	100\%		
bA. 19 Input voltage	$\begin{aligned} & 220 \mathrm{~V} \rightarrow 220 \\ & 440 \mathrm{~V} \rightarrow 380 \end{aligned}$		
bA. 20   Auto tuning	None		
bA. 21   Stator Resistor	0		
bA. 22   Leak Inductor	_ mH		
bA. 23   Stator Inductor	_-mH		
bA. 24   Rotor Time Const	145 ms		
bA. 25   Stator inductance scale.	100\%		
bA. 26   Rotor time constant scale.	100\%		
bA. 31   Regeneration inductance scale	80\%		
bA. 41   User Frequency 1	15.00 Hz		
bA. 42   User Voltage 1	25\%		
bA. 43   User Frequency 2	30.00 Hz		
bA. 44   User Voltage 2	50\%		
bA. 45   User Frequency 3	45.00 Hz		
bA. 46   User Voltage 4	75\%		
bA. 47   User Frequency 4	0.00 Hz		
bA. 48   User Voltage 5	0\%		
St1   Multi-Reference 1	10.00\%		


PARAMETER	DEFAULT VALUE
St2   Multi-Reference 2	20.00\%
St3   Multi-Reference 3	30.00\%
bA. 53   Multi-Reference 4	40.00\%
bA. 54   Multi-Reference 5	50.00\%
bA. 55   Multi-Reference 6	60.00\%
bA. 56   Multi-Reference 7	60.00\%
bA. 70   Acceleration ramp 2	20.0s
bA. 71   Deceleration ramp 2	30.0s
bA. 72   Acceleration ramp 3	20.0s
bA. 73   Deceleration ramp 3	30.0s
bA. 74   Acceleration ramp 4	20.0s
bA. 75   Deceleration ramp 4	30.0s
bA. 76   Acceleration ramp 5	20.0s
bA. 77   Deceleration ramp 5	30.0s
bA. 78   Acceleration ramp 6	20.0s
bA. 79   Deceleration ramp 6	30.0s
bA. 80 Acceleration ramp 7	20.0s
bA. 81 Deceleration ramp 7	30.0s
bA. 82   Acceleration ramp 8	20.0s
bA. 83 Deceleration ramp 8	30.0s

PARAMETER

Ad. 1
Acceleration pattern
Ad. 2
Deceleration pattern

## Ad. 3

S curve start acceleration slope Ad. 4
S curve stop acceleration slope
Ad. 5
S curve start decal. slope

## Ad. 6

S curve stop decal. slope
Ad. 7
Motor start mode

## Ad. 8

Stop mode

## Ad. 9

Allow speed inversion
Ad. 10
Power-on Run
Ad. 12
Time to DC start
Ad. 13
Current injection DC start
Ad. 14
Pre-DC brake time
Ad. 15
DC brake time
Ad. 16
Current level DC brake
Ad. 17
Frequency start DC brake
Ad. 20
Acceleration dwell frequency
Ad. 21
Acceleration dwell time

## Ad. 22

Deceleration dwell frequency

DEFAULT
VALUE
SETTING 1
SETTING 2

Ad: Expanded Functions
Linear

Linear

40\%

40\% 40\%

40\%

RAMP

RAMP

None

N
0.00s

50\%
0.10 s
1.00 s

50\%
5.00 Hz
5.00 Hz
0.0s
5.00 Hz

## PARAMETER

Ad. 23
Deceleration dwell time

## Ad. 24

Use frequency limit
Ad. 25
Frequency lower limit

## Ad. 26

Frequency higher limit
Ad. 27
Jump frequency activation
Ad. 28
Lower limit jump frequency 1
Ad. 29
Upper limit jump frequency 1

## Ad. 30

Lower limit jump frequency 2

## Ad. 31

Upper limit jump frequency 2
Ad. 32
Lower limit jump frequency 3
Ad. 33
Upper limit jump frequency 3

## Ad. 41 <br> Open brake current

## Ad. 42

Delay before brake opening
Ad. 44
Brake opening forward freq.
Ad. 45
Brake opening reverse freq.
Ad. 46
Delay before brake closing
Ad. 47
Brake closing frequency

## Ad. 50

Minimum flux mode

## Ad. 51

Minimum flux level in manual mode
Ad. 60
Acceleration dwell frequency

## DEFAULT VALUE

N
0.50 Hz
[]/dr. 20 Hz

## N

10.00 Hz
15.00 Hz
20.00 Hz
25.00 Hz
30.00 Hz
35.00 Hz
50.0\%
1.00s
1.00 Hz
1.00 Hz
1.00s
2.00 Hz

NONE
$0 \%$
0.00 Hz

SETTING 1
SETTING 2
$\qquad$

## PARAMETER

Ad. 64
Fan operating mode
Ad. 65
Save motorized
potentiometer frequency
Ad. 66
Select comparator source

## Ad. 67

Output activation level
comparator mode
Ad. 68
Output deactivation level
comparator mode
Ad. 70
Safe operation selection
Ad. 71
Safe operation stop
Ad. 72
Q-Stop Time
5.0s

Ad. 74
Enable regeneration
prevention
Ad. 75
Regeneration prevention level
Ad. 76
Compare frequency limit

## Ad. 77

$P$ gain regeneration
50.0\%
prevention
Ad. 78
I gain regeneration prevention
Ad. 80
Fire mode selection
Ad. 81
Fire mode frequency

## Ad. 82

Fire mode direction

## DEFAULT

 VALUEDuring Run

## N

None
90.00\%
10.00\%

Always
Enable
Free Run

N

700V
1.00 Hz
50.0ms

None
60.00 Hz

Forward

## Cn: Control Functions

## Cn. 4 <br> Modulation frequency <br> Cn. 5 <br> Modulation mode <br> $2.0 / 3.0 \mathrm{kHz}$ <br> Normal <br> PWM

SETTING 1
SETTING 2
$\qquad$

PARAMETER	DEFAULT VALUE
Cn. 9   Pre-excitation time	1.00s
Cn. 10   Pre-excitation flux	100.0\%
Cn. 11   Power off delay	0.00s
Cn. 20   Sensorless control gain 2	N
Cn. 21   ASR proportional gain 1	\%
Cn. 22   ASR integral time 1	__ms
Cn. 23   Independent controller proportional gain 2	__._\%
Cn. 24   Independent controller integral gain 2	__._\%
Cn. 25   Integral time sensorless controller   Cn. 26	__ms
Flux estimator proportional gain	\%
Cn. 27   Flux estimator integral gain	\%
Cn. 28   Speed estimator proportional gain 1   Cn. 29	-
Speed estimator integral gain 1 Cn. 30	-
Speed estimator integral gain 2 Cn. 31	-
Sensorless cont. proportional gain   Cn. 32	-
Sensorless controller integral gain	-
Cn. 48   Controller P gain	1200
Cn. 49   Controller I gain	120


PARAMETER	DEFAULT VALUE	SETTING 1	SETTING 2
$\text { Cn. } 52$   Output filter vector	Oms		
Cn. 53   Torque limit reference	LOCAL		
Cn. 54   Forward positive torque limit	180.0\%		
Cn. 55   Forward negative torque limit	180.0\%		
Cn. 56   Reverse positive torque limit	180.0\%		
Cn. 57   Reverse negative torque limit	180.0\%		
Cn. 62   Speed limit reference	LOCAL		
Cn. 63   Forward speed limit	50.00 Hz		
Cn. 64   Reverse speed limit	50.00 Hz		
Cn. 65   Speed limit gain	500\%		
Cn. 70   Speed search mode selection	Flying Start1		
Cn. 71   Search mode	0000		
Cn. 72   Speed search mode current	150\%		
Cn. 73   Speed search mode proportional gain Cn. 74   Speed search mode integral gain	$100 / 600$ $100 / 600$		
$\text { Cn. } 75$   Speed search delay	1.0s		
Cn. 76   Speed estimator gain	100\%		
$\begin{aligned} & \text { Cn. } 77 \\ & \text { KEB Select } \end{aligned}$	No		
Cn. 78   Initial value for KEB operation	125.0\%		


PARAMETER	DEFAULT VALUE
Cn. 79   Value to stop KEB operation	130.0\%
Cn. 80 KEB proportional gain	10000
Cn. 81 KEB integral gain	500
Cn. 82   Energy buffering Slip gain	30.0
Cn. 83   Energy buffering acceleration time	10.0
Cn. 85   Flux proportional gain 1	370
Cn. 86   Flux proportional gain 2	0
Cn. 87   Flux proportional gain 3	100
Cn. 88   Flux integral gain 1	50
Cn. 89   Flux integral gain 2	50
Cn. 90   Flux integral gain 2	-
Cn. 91   Sensorless voltage compensation 1 Cn. 92	-
Sensorless voltage compensation 2 Cn. 93	-
Sensorless voltage compensation 3 Cn. 94	20
Sensorless fluctuation frequency Cn. 95	100.0\%
Sensorless switching frequency	2.00 Hz

SETTING 1
SETTING 2
$\qquad$

## In: Inputs



In. 41
V2 maximum reference
In. 46
V2 Inverting
In. 47
Adjust I 2 visualization
In. 50
12 Monitor
In. 52
12 filter
In. 53
12 minimum current
In. 54
12 minimum reference
In. 55
12 maximum current
In. 56
12 maximum reference
In. 61
12 Inverting
In. 62
Adjust I2 visualization
In. 65
Digital input 1
In. 66
Digital input 2
In. 67
Digital input 3
In. 68
Digital input 4
In. 69
Digital input 5
In. 70
Digital input 6
In. 71
Digital input 7

## In. 85

Digital input activation delay
In. 86
Digital input deactivation delay
In. 87
Digital input contact type
100.00\%

N
0.04\%
0.00 mA

10 ms
4.00 mA
0.00\%
10.00 mA
$100.00 \%$

N
0.04\%

1

2

3

3

7

8

9

10 ms 3 ms 0000

In. 89
DI scan time
In. 90
Digital inputs status
0000
0.00 kHz

400ms
0.00 kHz
0.00\%

TI minimum input frequency
percentage
In. 95
TI maximum input frequency
In. 96
TI maximum input frequency percentage
In. 97
TI Inverting
In. 98
TI noise reduction level
In. 99
Input mode setting
1 ms
32.00 kHz
100.00\%

N
0.04\%

00
$\qquad$

## OU: Outputs

## OU. 1

Analog output 1 mode selection

## OU. 2

Analog output 1 gain

## OU. 3

Analog output 1 offset
OU. 4
Analog output 1 filter

## OU. 5

Analog output 1 constant

## setting

OU. 6
Analog output 1 monitor
OU. 30
Relay fault output
OU. 31
Relay 1 control source
0.0\%
0.0\%

010
Frequency
100.0\%
0.0\%

5 ms

Trip
$\qquad$

OU. 33
Digital output 1 function
OU. 41
Digital outputs status
OU. 50
Digital output connection delay
OU. 51
Digital output disconnection delay
OU. 52
NC/NO Relays logic
OU. 53
Digital output connection delay on fault OU. 54
Digital output disconnection delay on fault OU. 55
Digital output connection
delay
OU. 56
Digital output disconnection delay
OU. 57
Relay FDT level
OU. 58
Relay FDT band $\quad 10.00 \mathrm{~Hz}$

## CM. 1

Slave address

## CM. 2

Communication protocol

## CM: Communications

1

Modbus
0.00 s 0.00s 0.00s

Frequency
100.0\%
0.0\%

5 ms
$0.0 \%$
0.0\%

Run

00
0.00s $\qquad$

## CM. 3

Baud rate
CM. 4

Communication frame
structure

## CM. 5

Response delay
CM. 6

Communication option S/W version
CM. 7

Communication option ID

## CM. 8

Card baud rate

## CM. 9

Communication option LED status
CM. 30

Output parameters number
CM. 31

Output communication
000A
address 1
CM. 32

Output communication
000E
address 2
CM. 33

Output communication address 3
CM. 34

Output communication
0000
address 4
CM. 35

Output communication
0000
address 5
CM. 36

Output communication
address 6

## CM. 37

Output communication
0000
address 7
CM. 38

Output communication
0000
address 8
CM. 50

Number of input parameters

## CM. 51

Input comm. address 1
9600bps

D8/PN/S1

5ms
0.00

1

12Mbps

3
$\qquad$
CM. 52

Input comm. address 2
CM. 53

Input comm. address 3
CM. 54

Input comm. address 4
CM. 55

Input comm. address 5
CM. 56

Input comm. address 6
CM. 57

Input comm. address 7
CM. 58

Input comm. address 8

## CM. 68

Field bus data swap

## CM. 70

Communication multifunction input 1
CM. 71

Communication multifunction input 2
CM. 72

Communication multifunction input 3
CM. 73

Communication multifunction input 4
CM. 74

Communication multifunction input 5
CM. 75

Communication multifunction input 6
CM. 76

Communication multifunction
input 7
CM. 77

Communication multifunction input 8
CM. 86

Comm. multifunction input monitoring
CM. 90

Data frame comm. monitor
CM. 91

Received data frames
counter

0006 0000 0000 0000 0000 0000 0000 0

None None None None None None None None 0 0 0
CM. 92

Frames with error counter
CM. 93

NAK frames
CM. 94

Communications update
CM. 95

P2P communication selection
CM. 96

Digital output selection

## AP. 1

Application function selection
AP. 2
Enable PLC mode

## AP. 16

PID output
AP. 17
PID reference
AP. 18
PID feedback
AP. 19
PID local
AP. 20
Select PID regulator source

## AP. 21

Select feedback signal
source
AP. 22
PID controller proportional gain
AP. 23
PID controller integration time

## AP. 24

PID controller differential time

## AP. 25

PID output fine adjustment
AP. 26
Proportional gain scale
AP. 27
PID Filter
AP. 28
PID mode

0

0

NO
Disable all

0

## AP: PID

## Proc PID

N
$+0.0 \%$
$+50.00 \%$
$+0.00 \%$
$+50.00 \%$

MREF

V1
$+50.00 \%$
10.0 ms

Oms
$+0.0 \%$
100.0\%

Oms

Process

AP. 29
Upper limit PID output

## AP. 30

Lower limit PID output
AP. 31
Invert PID
AP. 32
PID output scale
AP. 34
PrePID reference
AP. 35
PrePID end reference
AP. 36
PrePID delay
AP. 37
Sleep mode activation delay
AP. 38
Sleep mode activation speed
AP. 39
Awakening level
AP. 40
PID WakeUp mode
AP. 42
PID unit
AP. 43
PID unit gain
AP. 44
PID scale unit
AP. 45
Proportional gain 2
100.0\%

## Pr: Protections

## Pr. 4 <br> Load duty type

Pr. 5
Phase loss type
Pr. 6
Ripple voltage
Pr. 7
Fault deceleration time

## Pr. 8

Start after restart
$+60.00 \mathrm{~Hz}$
$-60.00 \mathrm{~Hz}$

N
+100.00\%
0.00 Hz
$0.0 \%$

600s
60.0s
0.00 Hz
$+35 \%$

Below
\%
$100.00 \%$
x1

Heavy

NONE

15 V
3.0s

N
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Pr. 9   Retry attempts number	0
Pr. 10   Retry delay	1.0s
Pr. 12   Response in case of a speed reference loss	None
Pr. 13   Lost reference delay	1.0s
Pr. 14   Reference for lost reference	0.00 Hz
Pr. 15   Al Lost Level	Half
Pr. 17   Overload warning select	YES
Pr. 18   Overload warning level	+150\%
Pr. 19   Overload warning time	10.0s
Pr. 20   Overload trip select	FreeRun
Pr. 21   Overload level	180\%
Pr. 22   Overload trip time	60.0s
Pr. 25   Enable underload	YES
Pr. 26   Underload warning delay	10.0s
Pr. 27   Underload fault mode	None
$\text { Pr. } 28$   Underload fault delay	30.0
Pr. 29   Underload minimum level	+30\%
Pr. 30   Underload maximum level	+30\%
Pr. 31   Action in case no motor is detected	None
Pr. 32   No motor fault level	+5\%

Pr. 33
No motor fault delay
Pr. 40
Action in case of thermoelectronic fault Pr. 41
Motor cooling mode at zero speed
Pr. 42
Overcurrent level during $1 \quad 150 \%$
min
Pr. 43
Continuous overcurrent level

## Pr. 45

Free run trip mode
Pr. 50
Stall prevention
Pr. 51
Speed for stall protection 1
Pr. 52
Level for stall protection 1
Pr. 53
Speed for stall protection 2

## Pr. 54

Level for stall protection 2
Pr. 55
Speed for stall protection 3

## Pr. 56

Level for stall protection 3
Pr. 57
Speed for stall protection 4
Pr. 58
Level for stall protection 4
Pr. 59
Flux braking gain

## Pr. 60

CAP diagnosis level
Pr. 61
Capacitor diagnosis mode
Pr. 62
CAP exchange warning level
Pr. 63
Capacitance reference

None
3.0s SELF $+120 \%$

FreeRun 00 60 Hz 180\% 60 Hz 180\% 60 Hz 180\% 60 Hz 180\% $0 \%$ $0 \%$ $+0 \%$ 0\% 0.0\%

## Pr. 66

Braking resistor configuration
$+0 \%$
Pr. 73
Speed deviation fault
Pr. 74
Speed deviation band
Pr. 75
Speed deviation time
Pr. 79
Action in case of fan trip
Pr. 80
Optional card trip mode
Pr. 81
Low voltage trip delay
Pr. 82
Enable low voltage trip
Pr. 86
Fan use percentage
Pr. 87
Fan exchange warning level
Pr. 88
Fan time reset
Pr. 89
CAP fan status
Pr. 90
Warning information
Pr. 91
Fifth fault
Pr. 92
Fourth fault
Pr. 93
Third fault
Pr. 94
Second fault
Pr. 95
nOn
First fault
Pr. 96
Reset fault history N

50

60

Warn

FreeRun
0.0 s

YES

0\%
90.0\%

N

0
nOn
nOn
nOn
nOn

0

M2: Second Motor
M2.4
Motor 2 acceleration ramp
20.0s

M2.5   Motor 2 deceleration ramp	30.0s
M2.6   Motor 2 rated power	4.0kW
M2.7   Motor 2 frequency	60.00 Hz
M2.8   Control type selection	V/Hz
M2.10   Poles number	-
M2.11   Rated Slip	_rpm
M2.12   Motor nominal current	_. $A$
M2.13   No load current	_._A
M2.14   Motor 2 voltage	V
M2.15   Motor 2 efficiency	\%
M2.16   Motor 2 inertia rate	-
M2.17   Stator resistor	$\ldots \mathrm{m} \Omega$
M2.18   Leak inductor	-.__m
M2.19   Stator inductor	_._mH
M2.20   Rotor time constant	__ms
M2.25   V/F pattern	Linear
M2.26   Torque in forward direction	+2.0\%
M2.27   Torque in reverse direction	+2.0\%
M2.28   Stall prevention level motor 2	150\%
M2.29 Motor 2 overcurrent level during 1 minute	+150\%

M2.30
Motor 2 continuous $+100 \%$
overcurrent level

## US. 1

PLC operation mode

0 $\qquad$

0

Stop

0

0

0

0

0

0

0

0

0

0

0

0

## US: PLC Sequence

$\qquad$

Output link address for PLC function 14

### 0.02 s <br> US. 2 <br> PLC loop time

function 5

## US. 16

Output link address for PLC
function 6
US. 17
Output link address for PLC function 7
US. 18
Output link address for PLC
function 8
US. 19
Output link address for PLC
function 9

## US. 20

Output link address for PLC
function 10
US. 21
Output link address for PLC
function 11
US. 22
Output link address for PLC
function 12
US. 23
Output link address for PLC function 13
US. 24

## US. 25

Output link address for PLC function 15
US. 26
Output link address for PLC
function 16
US. 27
Output link address for PLC function 17
US. 28
Output link address for PLC
function 18
US. 31
PLC input value 1

## US. 32

PLC input value 2
US. 33
PLC input value 3
US. 34
PLC input value 4
US. 35
PLC input value 5
US. 36
PLC input value 6
US. 37
PLC input value 7
US. 38
PLC input value 8
US. 39
PLC input value 9
US. 40
PLC input value 10
US. 41
PLC input value 11
US. 42
PLC input value 12
US. 43
PLC input value 13
US. 44
PLC input value 14
US. 45
PLC input value 15
US. 46
PLC input value 16
$\qquad$

US. 47
PLC input value 17
US. 48
PLC input value 18

## US. 49

PLC input value 19
US. 50
PLC input value 20
US. 51
PLC input value 21
US. 52
PLC input value 22
US. 53
PLC input value 23

## US. 54

PLC input value 24
US. 55
PLC input value 25
US. 56
PLC input value 26
US. 57
PLC input value 27
US. 58
PLC input value 28
US. 59
PLC input value 29

## US. 60

PLC input value 30
US. 80
Analogue input V1 value
US. 81
Analogue input 12 value
US. 82
Digital inputs value

## US. 85

Analogue output value

## US. 88

Digital output value
$\qquad$
$\qquad$
$\qquad$

0

## UF: PLC Function

NOP

UF. 1
PLC function 1

UF. 2
Input A PLC function 1

## UF. 3

Input B PLC function1
UF. 4
Input C PLC function1
UF. 5
Output PLC function 1 PLC
UF. 6
PLC function 2 NOP
UF. 7
Input A PLC function 2
UF. 8
Input B PLC function 2
UF. 9
Input C PLC function 2
UF. 10
Output PLC function 2
UF. 11
PLC function 3
UF. 12
Input A PLC function 3
UF. 13
Input B PLC function 3
UF. 14
Input C PLC function 3
UF. 15
Output PLC function 3
UF. 16
PLC function 4
UF. 17
Input A PLC function 4
UF. 18
Input B PLC function 4
UF. 19
Input C PLC function 4

## UF. 20

Output PLC function 4
UF. 21
PLC function 5
UF. 22
Input A PLC function 5
$\qquad$

UF. 23
Input B PLC function 5
UF. 24
Input C PLC function 5

## UF. 25

Output PLC function 5
UF. 26
PLC function 6
UF. 27
Input A PLC function 6

## UF. 28

Input B PLC function 6
UF. 29
Input C PLC function 6

## UF. 30

Output PLC function 6
UF. 31
PLC function 7
UF. 32
Input A PLC function 7

## UF. 33

Input B PLC function 7
UF. 34
Input C PLC function 7

## UF. 35

Output PLC function 7

## UF. 36

PLC function 8
UF. 37
Input A PLC function 8

## UF. 38

Input B PLC function 8
UF. 39
Input C PLC function 8
UF. 40
Output PLC function 1

## UF. 41

PLC function 9
UF. 42
Input A PLC function 9
UF. 43
Input B PLC function 9
NOP
$\qquad$

UF. 44
Input C PLC function 9
UF. 45
Output PLC function 9

## UF. 46

PLC function 10
UF. 47
Input A PLC function 10
UF. 48
Input B PLC function 10
UF. 49
Input C PLC function 10
UF. 50
Output PLC function 10

## UF. 51

PLC function 11
UF. 52
Input A PLC function 11
UF. 53
Input B PLC function 11

## UF. 54

Input C PLC function 11

## UF. 55

Output PLC function 11

## UF. 56

PLC function 12
UF. 57
Input A PLC function 12
UF. 58
Input B PLC function 12

## UF. 59

Input C PLC function 12
UF. 60
Output PLC function 12
UF. 61
PLC function 13
UF. 62
Input A PLC function 13
UF. 63
Input B PLC function 13
UF. 64
Input C PLC function 13
$\qquad$

## UF. 65

Output PLC function 13
UF. 66
PLC function 14
UF. 67
Input A PLC function 14

## UF. 68

Input B PLC function 14
UF. 69
Input C PLC function 14

## UF. 70

Output PLC function 14
UF. 71
PLC function 15
UF. 72
Input A PLC function 15
UF. 73
Input B PLC function 15
UF. 74
Input C PLC function 15
UF. 75
Output PLC function 15
UF. 76
PLC function 16
UF. 77
Input A PLC function 16
UF. 78
Input B PLC function 16
UF. 79
Input C PLC function 16
UF. 80
Output PLC function 16
UF. 81
PLC function 17
UF. 82
Input A PLC function 17

## UF. 83

Input B PLC function 17
UF. 84
Input C PLC function 17
UF. 85
Output PLC function 17
$+0$

NOP 0

0

0
$+0$

NOP

0

0

0
$+0$

NOP

0

0

0
$+0$

NOP

0

0

0
$+0$
$\qquad$

UF. 86
PLC function 18
UF. 87
Input A PLC function 18
UF. 88
Input B PLC function 18
UF. 89
Input C PLC function 18
UF. 90
Output PLC function 18 PLC

NOP

0

0

0
$+0$

## DECLARATION OF CONFORMITY CE DECLARACIÓN DE CONFORMIDAD CE

## The Company la empresa:

Name Nombre:	POWER ELECTRONICS ESPAÑA, S.L.
Address Dirección:	C/Leonardo Da Vinci, 24-26, 46980 Paterna, Valencia, Spain
Telephone	+34961366557
Teléfona:	+34961318201
Fax:	

Declares under its own responsibility, that the product:
Declara bajo su propia responsabilidad, que el producto:

# Variable Speed Drive for AC motors <br> Variadores de velocidad para motores AC 

Brand Marca: Power Electronics
Is in conformity with the following European Directives:
Se halla en conformidad con las siguientes Directivas Europeas:

Reference Referencia	Títle Titulo
2014/30/UE	Electromagnetic Compatibility Compatibilidad Electromagnética
2014/35/UE El	Electrical Material intended to be used with certain limits of voltage.   Material Eléctrico para su utilización con determinados límites de tensión (Baja tensión)
References of the harm Compatibility Directive: Referencias de las normas Electromagnética:	monized technical norms applied under the Electromagnetic e:   s técnicas armonizadas aplicadas bajo la Directiva de Compatibilidad
Reference Referencia	Títle Titulo
IEC 61800-3:2004	Adjustable speed electrical power drive systems. Part 3: EMC requirements and specific test methods.   Accionamientos eléctricos de potencia de velocidad variable.   Parte 3: Requisitos CEM y métodos de ensayo especificos.
References of the harmonized technical norms applied under the Low Voltage Directive:   Referencias de las normas técnicas armonizadas aplicadas bajo la Directiva de Baja Tensión:	
Reference Referencia 7	Títle Titulo
IEC 61800-5-1:2007	Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy (IEC 61800-5-1:2007);   Accionamientos eléctricos de potencia de velocidad variable. Parte 5-1: Requisitos de seguridad. Eléctricos, térmicos y energéticos.

## $\infty$ <br> POMER ELECTRON/ICS

## 24h Technical Assistance 365 days a year

Find your nearest delegation: http://power-electronics.com/contact/

Follow us on:
in $\boldsymbol{v}^{+} \boldsymbol{v}$

©
POWER ELECTRONICS ${ }^{\circ}$


[^0]:    (*) For detailed instructions on how to make the connections, please refer to the Hardware and Installation Manual

[^1]:    *Total weight of the drive with the flange installed

